2011年四川省南充市中考数学试卷.doc
《2011年四川省南充市中考数学试卷.doc》由会员分享,可在线阅读,更多相关《2011年四川省南充市中考数学试卷.doc(20页珍藏版)》请在咨信网上搜索。
2011年四川省南充市中考数学试卷 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.(3分)计算a+(﹣a)的结果是( ) A.2a B.0 C.﹣a2 D.﹣2a 2.(3分)学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表: 品牌 甲 乙 丙 丁 销售量(瓶) 12 32 13 43 建议学校商店进货数量最多的品牌是( ) A.甲品牌 B.乙品牌 C.丙品牌 D.丁品牌 3.(3分)如图,直线DE经过点A,DE∥BC,∠B=60°,下列结论成立的是( ) A.∠C=60° B.∠DAB=60° C.∠EAC=60° D.∠BAC=60° 4.(3分)某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为( ) A.0.1 B.0.17 C.0.33 D.0.4 5.(3分)下列计算不正确的是( ) A.﹣+=﹣2 B.(﹣)2= C.︳﹣3︳=3 D.=2 6.(3分)方程(x+1)(x﹣2)=x+1的解是( ) A.2 B.3 C.﹣1,2 D.﹣1,3 7.(3分)小明乘车从南充到成都,行车的速度v(km/h)和行车时间t(h)之间的函数图象是( ) A. B. C. D. 8.(3分)若分式的值为零,则x的值是( ) A.0 B.1 C.﹣1 D.﹣2 9.(3分)在圆柱形油槽内装有一些油.截面如图,油面宽AB为6分米,如果再注入一些油后,油面AB上升1分米,油面宽变为8分米,圆柱形油槽直径MN为( ) A.6分米 B.8分米 C.10分米 D.12分米 10.(3分)如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论的个数是( ) A.1个 B.2个 C.3个 D.4个 二、填空题:(本大题共4个小题,每小题3分,共12分) 11.(3分)计算(π﹣3)0= . 12.(3分)某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,估计该厂这一万件产品中不合格品约为 件. 13.(3分)如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC=25°,则∠P= 度. 14.(3分)过反比例函数y=(k≠0)图象上一点A,分别作x轴,y轴的垂线,垂足分别为B,C,如果△ABC的面积为3.则k的值为 . 三、(本大题共3个小题,每小题6分,共18分) 15.(6分)先化简,再求值:(﹣2),其中x=2. 16.(6分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,再随机摸取出一张纸牌. (1)计算两次摸取纸牌上数字之和为5的概率; (2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由. 17.(6分)如图,等腰梯形ABCD中,AD∥BC,点E,F在BC上,且BE=FC,连接DE,AF.求证:DE=AF. 四、(本大题共2个小题,每小题8分,共16分) 18.(8分)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2. (1)求k的取值范围; (2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值. 19.(8分)如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上. (1)求证:△ABF∽△DFE; (2)若sin∠DFE=,求tan∠EBC的值. 五、(本大题共3个小题,每小题8分,共24分) 20.(8分)某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x(元/千度)的函数图象如图: (1)当电价为600元千度时,工厂消耗每千度电产生利润是多少? (2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元? 21.(8分)如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点. (1)求证:△MDC是等边三角形; (2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值. 22.(8分)抛物线y=ax2+bx+c与x轴的交点为A(m﹣4,0)和B(m,0),与直线y=﹣x+p相交于点A和点C(2m﹣4,m﹣6). (1)求抛物线的解析式; (2)若点P在抛物线上,且以点P和A,C以及另一点Q为顶点的平行四边形面积为12,求点P,Q的坐标; (3)在(2)条件下,若点M是x轴下方抛物线上的动点,当△PQM的面积最大时,请求出△PQM的最大面积及点M的坐标. 2011年四川省南充市中考数学试卷 参考答案与试题解析 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.【分析】本题需先把括号去掉,再合并同类项,即可得出正确答案. 【解答】解:a+(﹣a), =a﹣a, =0. 故选:B. 【点评】本题主要考查了整式的加减,在解题时要注意去括号,再合并同类项是解题的关键. 2.【分析】根据众数的意义和定义,众数是一组数据中出现次数最多的数据,则进货要进销售量最多的品牌. 【解答】解:在四个品牌的销售量中,丁的销售量最多. 故选:D. 【点评】本题属于基础题,考查了确定一组数据的众数的能力.一些学生往往对这个概念掌握不清楚,而误选其它选项. 3.【分析】根据平行线的性质,根据内错角相等,逐个排除选项即可得出结果. 【解答】解:∵DE∥BC,∠B=60°, ∴∠DAB=∠B=60°(两直线平行,内错角相等) ∠BAE=180°﹣∠B=120°(两直线平行,同旁内角互补) 故选:B. 【点评】本题考查了两直线平行,内错角相等的性质,难度适中. 4.【分析】首先根据频数分布直方图可以知道仰卧起坐次数在25~30之间的频数,然后除以总次数(30)即可得到仰卧起坐次数在25~30之间的频率. 【解答】解:∵从频数率分布直方图可以知道仰卧起坐次数在25~30之间的频数为12, 而仰卧起坐总次数为:3+10+12+5=30, ∴学生仰卧起坐次数在25~30之间的频率为12÷30=0.4. 故选:D. 【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题. 5.【分析】本题需先对每一项分别进行解答,得出正确的结果,最后选出本题的答案即可. 【解答】解:A、∵=﹣1,故本答案错误; B、=,故本答案正确; C、|﹣3|=3,故本答案正确; D、,故本答案正确. 故选:A. 【点评】本题主要考查了实数的运算,在解题时要注意运算顺序和符号是解题的关键. 6.【分析】先移项得到(x+1)(x﹣2)﹣(x+1)=0,然后利用提公因式因式分解,再化为两个一元一次方程,解方程即可. 【解答】解:(x+1)(x﹣2)﹣(x+1)=0, ∴(x+1)(x﹣2﹣1)=0,即(x+1)(x﹣3)=0, ∴x+1=0,或x﹣3=0, ∴x1=﹣1,x2=3. 故选:D. 【点评】本题考查了运用因式分解法解一元二次方程的方法:利用因式分解把一个一元二次方程化为两个一元一次方程. 7.【分析】根据时间t、速度v和路程s之间的关系,在路程不变的条件下,得v=,则v是t的反比例函数,且t>0. 【解答】解:∵v=(t>0), ∴v是t的反比例函数, 故选:B. 【点评】本题是一道反比例函数的实际应用题,注:在路程不变的条件下,v是t的反比例函数. 8.【分析】分式的值是0的条件是:分子为0,分母不为0,则可得x﹣1=0且x+2≠0,从而解决问题. 【解答】解:∵x﹣1=0且x+2≠0, ∴x=1. 故选:B. 【点评】此题考查的是分式的值为零的条件,分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点. 9.【分析】如图,油面AB上升1分米得到油面CD,依题意得AB=6,CD=8,过O点作AB的垂线,垂足为E,交CD于F点,连接OA,OC,由垂径定理,得AE=AB=3,CF=CD=4,设OE=x,则OF=x﹣1,在Rt△OAE中,OA2=AE2+OE2,在Rt△OCF中,OC2=CF2+OF2,由OA=OC,列方程求x即可求半径OA,得出直径MN. 【解答】解:如图,依题意得AB=6,CD=8,过O点作AB的垂线,垂足为E,交CD于F点,连接OA,OC, 由垂径定理,得AE=AB=3,CF=CD=4, 设OE=x,则OF=x﹣1, 在Rt△OAE中,OA2=AE2+OE2, 在Rt△OCF中,OC2=CF2+OF2, ∵OA=OC, ∴32+x2=42+(x﹣1)2, 解得x=4, ∴半径OA==5, ∴直径MN=2OA=10分米. 故选:C. 【点评】本题考查了垂径定理的运用.关键是利用垂径定理得出两个直角三角形,根据勾股定理表示半径的平方,根据半径相等列方程求解. 10.【分析】①根据等腰直角三角形的性质及△ABC∽△CDE的对应边成比例知,==;然后由直角三角形中的正切函数,得tan∠AEC=,再由等量代换求得tan∠AEC=; ②由三角形的面积公式、梯形的面积公式及不等式的基本性质a2+b2≥2ab(a=b时取等号)解答; ③、④通过作辅助线MN,构建直角梯形的中位线,根据梯形的中位线定理及等腰直角三角形的判定定理解答. 【解答】解:∵△ABC和△CDE均为等腰直角三角形, ∴AB=BC,CD=DE, ∴∠BAC=∠BCA=∠DCE=∠DEC=45°, ∴∠ACE=90°; ∵△ABC∽△CDE ∴== ①∴tan∠AEC=, ∴tan∠AEC=;故本选项正确; ②∵S△ABC=a2,S△CDE=b2,S梯形ABDE=(a+b)2, ∴S△ACE=S梯形ABDE﹣S△ABC﹣S△CDE=ab, S△ABC+S△CDE=(a2+b2)≥ab(a=b时取等号), ∴S△ABC+S△CDE≥S△ACE;故本选项正确; ④过点M作MN垂直于BD,垂足为N. ∵点M是AE的中点, 则MN为梯形中位线, ∴N为中点, ∴△BMD为等腰三角形, ∴BM=DM;故本选项正确; ③又MN=(AB+ED)=(BC+CD), ∴∠BMD=90°, 即BM⊥DM;故本选项正确. 故选:D. 【点评】本题综合考查了等腰直角三角形的判定与性质、梯形的中位线定理、锐角三角函数的定义等知识点.在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边. 二、填空题:(本大题共4个小题,每小题3分,共12分) 11.【分析】根据零指数幂的性质即可得出答案. 【解答】解:(π﹣3)0=1, 故答案为:1. 【点评】本题主要考查了零指数幂的性质,比较简单. 12.【分析】首先可以求出样本的不合格率,然后利用样本估计总体的思想即可求出这一万件产品中不合格品约为多少件. 【解答】解:∵某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格, ∴不合格率为:5÷100=5%, ∴估计该厂这一万件产品中不合格品为10000×5%=500件. 故答案为:500. 【点评】此题主要考查了利用样本估计总体的思想,解题时首先求出样本的不合格率,然后利用样本估计总体的思想即可解决问题. 13.【分析】首先利用切线长定理可得PA=PB,再根据∠OBA=∠BAC=25°,得出∠ABP的度数,再根据三角形内角和求出. 【解答】解:∵PA,PB是⊙O的切线,A,B为切点, ∴PA=PB,∠OBP=90°, ∵OA=OB, ∴∠OBA=∠BAC=25°, ∴∠ABP=90°﹣25°=65°, ∵PA=PB, ∴∠BAP=∠ABP=65°, ∴∠P=180°﹣65°﹣65°=50°, 故答案为:50. 【点评】此题主要考查了切线的性质以及三角形内角和定理,得出∠ABP是解决问题的关键. 14.【分析】根据△ABC的面积为反比例函数比例系数的绝对值的一半可得k的值. 【解答】解:∵△ABC的面积为反比例函数比例系数的绝对值的一半, ∴|k|=3, 解得k=6或﹣6, 故答案为:6或﹣6. 【点评】考查反比例函数系数k的几何意义;得到△ABC的面积与反比例函数比例系数的关系是解决本题的关键. 三、(本大题共3个小题,每小题6分,共18分) 15.【分析】先通分,计算括号里的,再利用乘法进行约分计算,最后把x的值代入计算即可. 【解答】解:原式==×=, 当x=2时,原式=﹣=﹣1. 【点评】本题考查了分式的化简求值.解题的关键是注意对分式的分子、分母因式分解. 16.【分析】(1)先列表展示所有可能的结果数为16,再找出两次摸取纸牌上数字之和为5的结果数,然后根据概率的概念计算即可; (2)从表中找出两次摸出纸牌上数字之和为奇数的结果数和两次摸出纸牌上数字之和为偶数的结果数,分别计算这两个事件的概率,然后判断游戏的公平性. 【解答】解:根据题意,列表如下: 甲 乙 1 2 3 4 1 2 3 4 5 2 3 4 5 6 .3 4 5 6 7 4 5 6 7 8 由上表可以看出,摸取一张纸牌然后放回,再随机摸取出纸牌,可能结果有16种,它们出现的可能性相等. (1)两次摸取纸牌上数字之和为5(记为事件A)有4个,P(A)==; (2)这个游戏公平,理由如下: ∵两次摸出纸牌上数字之和为奇数(记为事件B)有8个,P(B)==, 两次摸出纸牌上数字之和为偶数(记为事件C)有8个,P(C)==, ∴两次摸出纸牌上数字之和为奇数和为偶数的概率相同,所以这个游戏公平. 【点评】本题考查了关于游戏公平性的问题:先利用图表或树形图展示所有可能的结果数,然后计算出两个事件的概率,若它们的概率相等,则游戏公平;若它们的概率不相等,则游戏不公平. 17.【分析】先根据等腰梯形的性质获得△ABF≌△DCE所需要的条件,再利用全等的性质得到DE=AF. 【解答】证明:∵四边形ABCD为等腰梯形且AD∥BC, ∴AB=DC,∠B=∠C, 又∵BE=FC, ∴BE+EF=FC+EF即BF=CE, ∴△ABF≌△DCE, ∴DE=AF. 【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL. 注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 四、(本大题共2个小题,每小题8分,共16分) 18.【分析】(1)方程有两个实数根,必须满足△=b2﹣4ac≥0,从而求出实数k的取值范围; (2)先由一元二次方程根与系数的关系,得x1+x2=﹣2,x1x2=k+1.再代入不等式x1+x2﹣x1x2<﹣1,即可求得k的取值范围,然后根据k为整数,求出k的值. 【解答】解:(1)∵方程有实数根, ∴△=22﹣4(k+1)≥0, 解得k≤0. 故K的取值范围是k≤0. (2)根据一元二次方程根与系数的关系,得x1+x2=﹣2,x1x2=k+1, x1+x2﹣x1x2=﹣2﹣(k+1). 由已知,得﹣2﹣(k+1)<﹣1,解得k>﹣2. 又由(1)k≤0, ∴﹣2<k≤0. ∵k为整数, ∴k的值为﹣1或0. 【点评】本题综合考查了根的判别式和根与系数的关系.在运用一元二次方程根与系数的关系解题时,一定要注意其前提是此方程的判别式△≥0. 19.【分析】(1)根据矩形的性质可知∠A=∠D=∠C=90°,△BCE沿BE折叠为△BFE,得出∠BFE=∠C=90°,再根据三角形的内角和为180°,可知∠AFB+∠ABF=90°,得出∠ABF=∠DFE,即可证明△ABF∽△DFE, (2)已知sin∠DFE=,设DE=a,EF=3a,DF==2a,可得出CE=EF=3a,CD=DE+CE=4a,AB=4a,∠EBC=∠EBF,由(1)中△ABF∽△DFE,可得tan∠EBC=tan∠EBF==. 【解答】(1)证明:∵四边形ABCD是矩形 ∴∠A=∠D=∠C=90°, ∵△BCE沿BE折叠为△BFE, ∴∠BFE=∠C=90°, ∴∠AFB+∠DFE=180°﹣∠BFE=90°, 又∵∠AFB+∠ABF=90°, ∴∠ABF=∠DFE, ∴△ABF∽△DFE, (2)解:在Rt△DEF中,sin∠DFE==, ∴设DE=a,EF=3a,DF==2a, ∵△BCE沿BE折叠为△BFE, ∴CE=EF=3a,CD=DE+CE=4a,AB=4a,∠EBC=∠EBF, 又由(1)△ABF∽△DFE, ∴===, ∴tan∠EBF==, tan∠EBC=tan∠EBF=. 【点评】本题考查了矩形的性质以及相似三角形的证明方法,以及直角三角形中角的函数值,难度适中. 五、(本大题共3个小题,每小题8分,共24分) 20.【分析】(1)把(0,300),(500,200)代入直线解析式可得一次函数解析式,把x=600代入函数解析式可得利润的值; (2)利润=用电量×每千度电产生利润,结合该工厂每天用电量不超过60千度,得到利润的最大值即可. 【解答】解:(1)工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数解析式为: y=kx+b(k、b是常数,且k≠0). 该函数图象过点(0,300),(500,200), ∴, 解得. ∴y=﹣x+300(x≥0). 当电价x=600元/千度时,该工厂消耗每千度电产生利润y=﹣×600+300=180(元/千度). 答:工厂消耗每千度电产生利润是180元. (2)设工厂每天消耗电产生利润为w元,由题意得: W=my=m(﹣x+300)=m[﹣(10m+500)+300]. 化简配方,得:w=﹣2(m﹣50)2+5000. 由题意得:a=﹣2<0,m≤60, ∴当m=50时,w最大=5000, 即当工厂每天消耗50千度电时,工厂每天消耗电产生利润为5000元. 【点评】考查二次函数及一次函数的应用;得到总利润的等量关系是解决本题的关键;注意利用配方法解决二次函数的最值问题. 21.【分析】(1)过点D作DP⊥BC于点P,过点A作AQ⊥BC于点Q,得到CP=BQ=AB,CP+BQ=AB=1,得出BC=2CD,由点M是BC的中点,推出CM=CD,由∠C=60°,根据等边三角形的判定即可得到答案; (2)△AEF的周长存在最小值,理由是连接AM,由ABMD是菱形,得出△MAB,△MAD和△MC′D′是等边三角形,推出∠BME=∠AMF,证出△BME≌△AMF(ASA),得出BE=AF,ME=MF,推出△EMF是等边三角形,根据MF的最小值为点M到AD的距离,即EF的最小值是,即可求出△AEF的周长. 【解答】(1)证明:连接AM,过点D作DP⊥BC于点P,过点A作AQ⊥BC于点Q, 即AQ∥DP, ∵AD∥BC, ∴四边形ADPQ是平行四边形, ∴AD=QP=AB=CD, ∵∠C=∠B=60°, ∴∠BAQ=∠CDP=30°, ∴CP=BQ=AB=1, 即BC=1+1+2=4, ∵CD=2, ∴BC=2CD, ∵点M是BC的中点, BC=2CM, ∴CD=CM, ∵∠C=60°, ∴△MDC是等边三角形. (2)解:△AEF的周长存在最小值,理由如下: 过D作DN⊥BC于N,连接AM, ∵∠C=60°, ∴∠CDN=30°, ∵CD=2, ∴CN=1, ∴由勾股定理得:DN=, 连接AM,由(1)平行四边形ABMD是菱形, △MAB,△MAD和△MC′D′是等边三角形, ∠BMA=∠BME+∠AME=60°,∠EMF=∠AMF+∠AME=60°, ∴∠BME=∠AMF, 在△BME与△AMF中, , ∴△BME≌△AMF(ASA), ∴BE=AF,ME=MF,AE+AF=AE+BE=AB, ∵∠EMF=∠DMC=60°,故△EMF是等边三角形,EF=MF, ∵MF的最小值为点M到AD的距离等于DN的长,即是,即EF的最小值是, △AEF的周长=AE+AF+EF=AB+EF, △AEF的周长的最小值为2+, 答:存在,△AEF的周长的最小值为2+. 【点评】本题主要考查对等边三角形的性质和判定,旋转的性质,全等三角形的性质和判定,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键. 22.【分析】(1)把点A(m﹣4,0)和C(2m﹣4,m﹣6)代入直线y=﹣x+p上得到方程组,求出方程组的解,得出A、B、C的坐标,设抛物线y=ax2+bx+c=a(x﹣3)(x+1),把C(2,﹣3)代入求出a即可; (2)AC所在直线的解析式为:y=﹣x﹣1,根据平行四边形ACQP的面积为12,求出AC边上的高为2,过点D作DK⊥AC与PQ所在直线相交于点K,求出DK、DN,得到PQ的解析式为y=﹣x+3或y=﹣x﹣5,求出方程组的解,即可得到P1(3,0),P2(﹣2,5),根据ACQP是平行四边形,求出Q的坐标;同法求出以AC为对角线时Q的坐标; (3)设M(t,t2﹣2t﹣3),(﹣1<t<3),过点M作y轴的平行线,交PQ所在直线于点T,则T(t,﹣t+3),求出MT=﹣t2+t+6,过点M作MS⊥PQ所在直线于点S,求出MS=﹣(t﹣)2+,即可得到答案. 【解答】解:(1)∵点A(m﹣4,0)和C(2m﹣4,m﹣6)在直线y=﹣x+p上 ∴, 解得:, ∴A(﹣1,0),B(3,0),C(2,﹣3), 设抛物线y=ax2+bx+c=a(x﹣3)(x+1), ∵C(2,﹣3),代入得:﹣3=a(2﹣3)(2+1), ∴a=1 ∴抛物线解析式为:y=x2﹣2x﹣3. 答:抛物线解析式为y=x2﹣2x﹣3. (2)解:A(﹣1,0),C(2,﹣3),由勾股定理得:AC==3, AC所在直线的解析式为:y=﹣x﹣1, ∠BAC=45°, ∵平行四边形ACQP的面积为12, ∴平行四边形ACQP中AC边上的高为=2, 过点D作DK⊥AC与PQ所在直线相交于点K,DK=2, ∴DN=4, ∵四边形ACQP,PQ所在直线在直线ADC的两侧,可能各有一条, ∴根据平移的性质得出直线PQ的解析式为①y=﹣x+3或②y=﹣x﹣5, ∴由①得:, 解得:或, 由②得:,方程组无解, 即P1(3,0),P2(﹣2,5), ∵ACQP是平行四边形,A(﹣1,0),C(2,﹣3), ∴当P(3,0)时,当以AC为边时,Q1(6,﹣3),Q2(0,3),当AC为对角线时Q3(﹣2,﹣3) ∴满足条件的P,Q点是P1(3,0),Q1(6,﹣3)或P2(﹣2,5),Q2(1,2),Q3(﹣2,﹣3) 当P(﹣2,5)时,当以AC为边时,Q4(1,2),Q5(﹣5,8),当AC为对角线时,Q6(3,﹣8) 以AC为对角线时, 答:点P,Q的坐标是P1(3,0),Q1(6,﹣3)或(0,3)或(﹣2,﹣3) 或P2(﹣2,5),Q2(1,2)或(﹣5,8)或(3,﹣8). (3)解:设M(t,t2﹣2t﹣3),(﹣1<t<3), 过点M作y轴的平行线,交PQ所在直线于点T,则T(t,﹣t+3), MT=(﹣t+3)﹣(t2﹣2t﹣3)=﹣t2+t+6, 过点M作MS⊥PQ所在直线于点S, MS=MT=(﹣t2+t+6)=﹣(t﹣)2+, 则当t=时,M(,﹣),△PQM中PQ边上高的最大值为, ∵P1(3,0),Q1(6,﹣3)或P2(﹣2,5),Q2(1,2). ∴当P(3,0),Q(6,﹣3)时,PQ==3. 当P(﹣2,5),Q(1,2)时,PQ==3, ∴S△PQM=×PQ×=. 答:△PQM的最大面积是,点M的坐标是(,﹣). 【点评】本题主要考查对用待定系数法求二次函数的解析式,二次函数的最值,平行四边形的性质,解二元一次方程组等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键,此题是一个综合性比较强的题目,有一定的难度. 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2020/2/21 11:41:57;用户:18366185883;邮箱:18366185883;学号:22597006 第20页(共20页)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2011 四川省 南充市 中考 数学试卷
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文