2011年山东省德州市中考数学试卷.doc
《2011年山东省德州市中考数学试卷.doc》由会员分享,可在线阅读,更多相关《2011年山东省德州市中考数学试卷.doc(21页珍藏版)》请在咨信网上搜索。
2011年山东省德州市中考数学试卷 一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.(3分)下列计算正确的是( ) A.(﹣8)﹣8=0 B.(﹣)×(﹣2)=1 C.﹣(﹣1)0=1 D.|﹣2|=﹣2 2.(3分)一个几何体的主视图、左视图、俯视图完全相同,它一定是( ) A.圆柱 B.圆锥 C.球体 D.长方体 3.(3分)温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是( ) A.3.6×107 B.3.6×106 C.36×106 D.0.36×108 4.(3分)如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3等于( ) A.55° B.60° C.65° D.70° 5.(3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下: 对这两名运动员的成绩进行比较,下列四个结论中,不正确的是( ) A.甲运动员得分的极差大于乙运动员得分的极差 B.甲运动员得分的中位数大于乙运动员得分的中位数 C.甲运动员的得分平均数大于乙运动员的得分平均数 D.甲运动员的成绩比乙运动员的成绩稳定 6.(3分)已知函数y=(x﹣a)(x﹣b)(其中a>b)的图象如下面右图所示,则函数y=ax+b的图象可能正确的是( ) A. B. C. D. 7.(3分)一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是( ) A.a4>a2>a1 B.a4>a3>a2 C.a1>a2>a3 D.a2>a3>a4 8.(3分)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),…,则第n个图形的周长是( ) A.2n B.4n C.2n+1 D.2n+2 二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.(4分)点P(1,2)关于x轴的对称点P1的坐标是 . 10.(4分)如图,D,E,F分别为△ABC三边的中点,则图中平行四边形的个数为 . 11.(4分)母线长为2,底面圆的半径为1的圆锥的侧面积为 . 12.(4分)当时,= . 13.(4分)下列命题中,其逆命题成立的是 .(只填写序号) ①同旁内角互补,两直线平行; ②如果两个角是直角,那么它们相等; ③如果两个实数相等,那么它们的平方相等; ④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形. 14.(4分)若x1,x2是方程x2+x﹣1=0的两个根,则x12+x22= . 15.(4分)在4张卡片上分别写有1~4的整数,随机抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是 . 16.(4分)长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为 . 三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. 17.(6分)解不等式组,并把解集在数轴上表示出来. 18.(8分)2011年5月9日至14日,德州市共有35000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成下面的扇形图和统计表: 等级 成绩(分) 频数(人数) 频率 A 90~100 19 0.38 B 75~89 m x C 60~74 n y D 60以下 3 0.06 合计 50 1.00 请你根据以上图表提供的信息,解答下列问题: (1)m= ,n= ,x= ,y= ; (2)在扇形图中,C等级所对应的圆心角是 度; (3)如果该校九年级共有500名男生参加了立定跳远测试,那么请你估计这些男生成绩等级达到优秀和良好的共有多少人? 19.(8分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O. (1)求证:AD=AE; (2)连接OA,BC,试判断直线OA,BC的关系并说明理由. 20.(10分)某兴趣小组用高为1.2米的仪器测量建筑物CD的高度.如示意图,由距CD一定距离的A处用仪器观察建筑物顶部D的仰角为β,在A和C之间选一点B,由B处用仪器观察建筑物顶部D的仰角为α.测得A,B之间的距离为4米,tanα=1.6,tanβ=1.2,试求建筑物CD的高度. 21.(10分)为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元. (1)甲、乙两个工程队单独完成各需多少天? (2)请你设计一种符合要求的施工方案,并求出所需的工程费用. 22.(10分)●观察计算 当a=5,b=3时,与的大小关系是 . 当a=4,b=4时,与的大小关系是 . ●探究证明 如图所示,△ABC为圆O的内接三角形,AB为直径,过C作CD⊥AB于D,设AD=a,BD=b. (1)分别用a,b表示线段OC,CD; (2)探求OC与CD表达式之间存在的关系(用含a,b的式子表示). ●归纳结论 根据上面的观察计算、探究证明,你能得出与的大小关系是: . ●实践应用 要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值. 23.(12分)在直角坐标系xOy中,已知点P是反比例函数(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A. (1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由. (2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时: ①求出点A,B,C的坐标. ②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的?若存在,试求出所有满足条件的M点的坐标;若不存在,试说明理由. 2011年山东省德州市中考数学试卷 参考答案与试题解析 一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.【分析】利用有理数的减法、有理数的乘法法则和a0=1(a≠0)、负数的绝对值等于它的相反数计算即可. 【解答】解:A、(﹣8)﹣8=﹣16,此选项错误; B、(﹣)×(﹣2)=1,此选项正确; C、﹣(﹣1)0=﹣1,此选项错误; D、|﹣2|=2,此选项错误. 故选:B. 【点评】本题考查了有理数的减法、有理数的乘法法则、零指数幂、绝对值的计算.解题的关键是熟练掌握各种运算法则. 2.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 【解答】解:A、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误; B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误; C、球体的主视图、左视图、俯视图都是圆形;故本选项正确; D、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误; 故选:C. 【点评】本题考查了简单几何体的三视图,锻炼了学生的空间想象能力. 3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同. 【解答】解:∵36 000 000=3.6×107; 故选:A. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 4.【分析】设∠2的对顶角为∠5,∠1在l2上的同位角为∠4,结合已知条件可推出∠1=∠4=40°,∠2=∠5=75°,即可得出∠3的度数. 【解答】解:∵直线l1∥l2,∠1=40°,∠2=75°, ∴∠1=∠4=40°,∠2=∠5=75°, ∴∠3=65°. 故选:C. 【点评】本题主要考查三角形的内角和定理,平行线的性质和对顶角的性质,关键在于根据已知条件找到有关相等的角. 5.【分析】结合折线统计图,利用数据逐一分析解答即可. 【解答】解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,故A选项正确; B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,故B选项正确; C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,故C选项正确; D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,故D选项错误. 故选:D. 【点评】此题主要结合折线统计图,利用极差、中位数、平均数以及方差来进行分析数据,找到解决问题的突破口. 6.【分析】根据图象可得出方程(x﹣a)(x﹣b)=0的两个实数根为a,b,且一正一负,负数的绝对值大,又a>b,则a>0,b<0.根据一次函数y=ax+b的图象的性质即可得出答案. 【解答】解:根据图象可知抛物线与x轴两交点的横坐标一正一负,则根据二次函数交点式的性质可知a,b异号, ∵a>b, ∴a>0,b<0, ∴函数y=ax+b的图象经过第一、三、四象限, 故选:D. 【点评】本题考查了抛物线与x轴的交点问题以及一次函数的性质,是重点内容要熟练掌握, 7.【分析】设等边三角形的边长是a,求出等边三角形的周长,即可求出等边三角形的周率a1;设正方形的边长是x,根据勾股定理求出对角线的长,即可求出周率;设正六边形的边长是b,过F作FQ∥AB交BE于Q,根据等边三角形的性质和平行四边形的性质求出直径,即可求出正六边形的周率a3;求出圆的周长和直径即可求出圆的周率,比较即可得到答案. 【解答】解:设等边三角形的边长是a,则等边三角形的周率a1==3 设正方形的边长是x,由勾股定理得:对角线是x,则正方形的周率是a2==2≈2.828, 设正六边形的边长是b,过F作FQ∥AB交BE于Q,得到平行四边形ABQF和等边三角形EFQ,直径是b+b=2b, ∴正六边形的周率是a3==3, 圆的周率是a4==π, ∴a4>a3>a2. 故选:B. 【点评】本题主要考查对正多边形与圆,多边形的内角和定理,平行四边形的性质和判定,等边三角形的性质和判定等知识点的理解和掌握,理解题意并能根据性质进行计算是解此题的关键. 8.【分析】从图1到图3,周长分别为4,8,16,由此即可得到通式,利用通式即可求解. 【解答】解:下面是各图的周长: 图1中周长为4; 图2周长为8; 图3周长为16; 所以第n个图形周长为2n+1. 故选:C. 【点评】本题考查了图形的变化规律,首先从图1到图3可得到规律,然后利用规律得到一般结论解决问题. 二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”即可求解. 【解答】解:∵关于x轴对称的点,横坐标相同,纵坐标互为相反数 ∴点P(1,2)关于x轴的对称点P1的坐标为(1,﹣2). 故答案为:(1,﹣2). 【点评】本题考查关于x轴对称的点的坐标的特点,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数. 10.【分析】根据三角形中位线的性质定理,可以推出DE∥AF,DF∥EC,DF∥BE且DE=AF,DF=EC,DF=BE,根据平行四边形的判定定理,即可推出有三个平行四边形. 【解答】解:∵D,E,F分别为△ABC三边的中点 ∴DE∥AF,DF∥EC,DF∥BE且DE=AF,DF=EC,DF=BE ∴四边形ADEF、DECF、DFEB分别为平行四边形 故答案为3. 【点评】本题主要考查平行四边的判定定理以及三角形中位线定理,关键在于找出相等而且平行的对边. 11.【分析】先计算出底面圆的周长,它等于圆锥侧面展开图扇形的弧长,而母线长为扇形的半径,然后根据扇形的面积公式计算即可. 【解答】解:∵圆锥的底面圆的半径为1, ∴圆锥的底面圆的周长=2π×1=2π, ∴圆锥的侧面积=×2π×2=2π. 故答案为:2π. 【点评】本题考查了圆锥的侧面积公式:S=l•R.圆锥侧面展开图为扇形,底面圆的周长等于扇形的弧长,母线长为扇形的半径. 12.【分析】先将分式的分子和分母分别分解因式,约分化简,然后将x的值代入化简后的代数式即可求值. 【解答】解:﹣1 =﹣1 =﹣ = =,将x=代入上式中得, 原式===. 故答案为:. 【点评】本题主要考查分式求值方法之一:先把分式化简后,再把分式中未知数对应的值代入求出分式的值. 13.【分析】把一个命题的条件和结论互换就得到它的逆命题,再分析逆命题是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案. 【解答】解:①两直线平行,同旁内角互补,正确; ②如果两个角相等,那么它们是直角,错误; ③如果两个实数的平方相等,那么这两个实数相等,错误; ④如果一个三角形是直角三角形,c不一定是斜边,故不一定满足:a2+b2=c2,故逆命题不一定正确, 故答案为①. 【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,难度适中. 14.【分析】先根据根与系数的关系求出x1+x2和x1•x2的值,再利用完全平方公式对所求代数式变形,然后把x1+x2和x1•x2的值整体代入计算即可. 【解答】解:∵x1,x2是方程x2+x﹣1=0的两个根, ∴x1+x2=﹣=﹣=﹣1,x1•x2===﹣1, ∴x12+x22=(x1+x2)2﹣2x1•x2=(﹣1)2﹣2×(﹣1)=1+2=3. 故答案是:3. 【点评】本题考查了根与系数的关系、完全平方公式.解题的关键是先求出x1+x2和x1•x2的值. 15.【分析】列举出所有情况,看第二次取出的数字能够整除第一次取出的数字的情况数占总情况数的多少即可. 【解答】解:如图所示: 共有16种情况,第二次取出的数字能够整除第一次取出的数字的情况数有8种, 所以概率为, 故答案为. 【点评】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到第二次取出的数字能够整除第一次取出的数字的情况数是解决本题的关键. 16.【分析】根据操作步骤,可知每一次操作时所得正方形的边长都等于原矩形的宽.所以首先需要判断矩形相邻的两边中,哪一条边是矩形的宽.当<a<1时,矩形的长为1,宽为a,所以第一次操作时所得正方形的边长为a,剩下的矩形相邻的两边分别为1﹣a,a.由1﹣a<a可知,第二次操作时所得正方形的边长为1﹣a,剩下的矩形相邻的两边分别为1﹣a,a﹣(1﹣a)=2a﹣1.由于(1﹣a)﹣(2a﹣1)=2﹣3a,所以(1﹣a)与(2a﹣1)的大小关系不能确定,需要分情况进行讨论.又因为可以进行三次操作,故分两种情况:①1﹣a>2a﹣1;②1﹣a<2a﹣1.对于每一种情况,分别求出操作后剩下的矩形的两边,根据剩下的矩形为正方形,列出方程,求出a的值. 【解答】解:由题意,可知当<a<1时,第一次操作后剩下的矩形的长为a,宽为1﹣a,所以第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1.此时,分两种情况: ①如果1﹣a>2a﹣1,即a<,那么第三次操作时正方形的边长为2a﹣1. ∵经过第三次操作后所得的矩形是正方形, ∴矩形的宽等于1﹣a, 即2a﹣1=(1﹣a)﹣(2a﹣1),解得a=; ②如果1﹣a<2a﹣1,即a>,那么第三次操作时正方形的边长为1﹣a. 则1﹣a=(2a﹣1)﹣(1﹣a),解得a=. 故答案为:或. 【点评】本题考查了一元一次方程的应用,解题的关键是分两种情况:①1﹣a>2a﹣1;②1﹣a<2a﹣1.分别求出操作后剩下的矩形的两边. 三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. 17.【分析】分别解两个不等式得到x≥1;x<4.它们的公共部分即为原不等式组的解集,然后把解集表示在数轴上. 【解答】解: 解不等式①,得x≥1; 解不等式②,得x<4. ∴1≤x<4. 在数轴上表示为:. 【点评】本题考查了解不等式组的方法:分别解各不等式,然后写出它们的公共部分即为不等式组的解集.也考查了利用数轴表示不等式组的解集得方法. 18.【分析】(1)让总人数50乘以相应的百分比40%可得m的值,x为相应百分比;让总人数50减去其余已知人数可得n的值,除以50即为y的值; (2)让360乘以相应频率即为C等级所对应的圆心角; (3)该校九年级总人数500乘以AB两个等级的百分比的和即为所求的人数. 【解答】解:(1)50×40%=20,0.4;50﹣19﹣20﹣3=8,8÷50=0.16; 故答案为:20,8,0.4,0.16; (2)0.16×360°=57.6°, 故答案为57.6. (3)由上表可知达到优秀和良好的共有19+20=39人,500×=390人. 【点评】考查有关识图问题;读懂图意是解决本题的关键;用到的知识点为:频数=总数×相应频率. 19.【分析】(1)根据全等三角形的判定方法,证明△ACD≌△ABE,即可得出AD=AE, (2)根据已知条件得出△ADO≌△AEO,得出∠DAO=∠EAO,即可判断出OA是∠BAC的平分线,即OA⊥BC. 【解答】(1)证明:在△ACD与△ABE中, ∵, ∴△ACD≌△ABE, ∴AD=AE. (2)答:直线OA垂直平分BC. 理由如下:连接BC,AO并延长交BC于F, 在Rt△ADO与Rt△AEO中, ∴Rt△ADO≌Rt△AEO(HL), ∴∠DAO=∠EAO, 即OA是∠BAC的平分线, 又∵AB=AC, ∴OA⊥BC且平分BC. 【点评】本题考查了全等三角形的判定方法,以及全等三角形的对应边相等,对应角相等的性质,难度适中. 20.【分析】CD与EF的延长线交于点G,设DG=x米.由三角函数的定义得到,在Rt△DGF中,,在Rt△DGE中,,根据EF=EG﹣FG,得到关于x的方程,解出x,再加上1.2即为建筑物CD的高度. 【解答】解:CD与EF的延长线交于点G,如图, 设DG=x米. 在Rt△DGF中,,即. 在Rt△DGE中,,即. ∴,. ∴. ∴4=﹣, 解方程得:x=19.2. ∴CD=DG+GC=19.2+1.2=20.4. 答:建筑物高为20.4米. 【点评】本题考查了仰角的概念:向上看,视线与水平线的夹角叫仰角.也考查了测量建筑物高度的方法以及三角函数的定义. 21.【分析】(1)如果设甲工程队单独完成该工程需x天,那么由“乙队单独完成此项工程的时间比甲队单独完成多用25天”,得出乙工程队单独完成该工程需(x+25)天.再根据“甲、乙两队合作完成工程需要30天”,可知等量关系为:甲工程队30天完成该工程的工作量+乙工程队30天完成该工程的工作量=1. (2)首先根据(1)中的结果,排除在60天内不能单独完成该工程的乙工程队,从而可知符合要求的施工方案有两种:方案一:由甲工程队单独完成;方案二:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用. 【解答】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需(x+25)天,总工作量为1,(1分) 根据题意得:.(3分) 方程两边同乘以x(x+25),得30(x+25)+30x=x(x+25), 即x2﹣35x﹣750=0. 解之,得x1=50,x2=﹣15.(5分) 经检验,x1=50,x2=﹣15都是原方程的解. 但x2=﹣15不符合题意,应舍去.(6分) ∴当x=50时,x+25=75. 答:甲工程队单独完成该工程需50天,则乙工程队单独完成该工程需75天.(7分) (2)此问题只要设计出符合条件的一种方案即可. 方案一:由甲工程队单独完成.(8分) 所需费用为:2500×50=125000(元).(10分) 方案二:由甲乙两队合作完成. 所需费用为:(2500+2000)×30=135000(元).(10分) 【点评】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.工程问题的基本关系式:工作总量=工作效率×工作时间. 22.【分析】●观察计算:分别代入计算即可得出与的大小关系; ●探究证明: (1)由于OC是直径AB的一半,则OC易得.通过证明△ACD∽△CBD,可求CD; (2)分a=b,a≠b讨论可得出与的大小关系; ●实践应用:通过前面的结论长方形为正方形时,周长最小. 【解答】解:●观察计算:>,=. ●探究证明: (1)∵AB=AD+BD=2OC, ∴ ∵AB为⊙O直径, ∴∠ACB=90°. ∵∠A+∠ACD=90°,∠ACD+∠BCD=90°, ∴∠A=∠BCD. ∴△ACD∽△CBD. ∴. 即CD2=AD•BD=ab, ∴. (2)当a=b时,OC=CD,=; a≠b时,OC>CD,>. ●结论归纳:. ●实践应用 设长方形一边长为x米,则另一边长为米,设镜框周长为l米,则≥. 当,即x=1(米)时,镜框周长最小. 此时四边形为正方形时,周长最小为4米. 【点评】本题综合考查了几何不等式,相似三角形的判定与性质,通过计算和证明得出结论:是解题的关键. 23.【分析】(1)四边形OKPA是正方形.当⊙P分别与两坐标轴相切时,PA⊥y轴,PK⊥x轴,x轴⊥y轴,且PA=PK,可判断结论; (2)①连接PB,设点P(x,),过点P作PG⊥BC于G,则半径PB=PC,由菱形的性质得PC=BC,可知△PBC为等边三角形,在Rt△PBG中,∠PBG=60°,PB=PA=x,PG=,利用sin∠PBG=,列方程求x即可; ②求直线PB的解析式,利用过A点或C点且平行于PB的直线解析式与抛物线解析式联立,列方程组求满足条件的M点坐标即可. 【解答】解:(1)四边形OKPA是正方形. 证明:∵⊙P分别与两坐标轴相切, ∴PA⊥OA,PK⊥OK. ∴∠PAO=∠OKP=90°. 又∵∠AOK=90°, ∴∠PAO=∠OKP=∠AOK=90°. ∴四边形OKPA是矩形. 又∵AP=KP, ∴四边形OKPA是正方形. (2)①连接PB,设点P的横坐标为x,则其纵坐标为. 过点P作PG⊥BC于G. ∵四边形ABCP为菱形, ∴BC=PA=PB=PC(半径). ∴△PBC为等边三角形. 在Rt△PBG中,∠PBG=60°,PB=PA=x, PG=. sin∠PBG=,即. 解之得:x=±2(负值舍去). ∴PG=,PA=BC=2. 易知四边形OGPA是矩形,PA=OG=2,BG=CG=1, ∴OB=OG﹣BG=1,OC=OG+GC=3. ∴A(0,),B(1,0),C(3,0). 设二次函数解析式为:y=ax2+bx+c. 据题意得: 解之得:a=,b=,c=. ∴二次函数关系式为:. ②解法一:设直线BP的解析式为:y=ux+v,据题意得: 解之得:u=,v=﹣. ∴直线BP的解析式为:y=x﹣, 过点A作直线AM∥BP,则可得直线AM的解析式为:. 解方程组: 得:;. 过点C作直线CM∥PB,则可设直线CM的解析式为:. ∴0=. ∴. ∴直线CM的解析式为:. 解方程组: 得:;. 综上可知,满足条件的M的坐标有四个, 分别为:(0,),(3,0),(4,),(7,). 解法二:∵, ∴A(0,),C(3,0)显然满足条件. 延长AP交抛物线于点M,由抛物线与圆的轴对称性可知,PM=PA. 又∵AM∥BC, ∴. ∴点M的纵坐标为. 又∵点M的横坐标为AM=PA+PM=2+2=4. ∴点M(4,)符合要求. 点(7,)的求法同解法一. 综上可知,满足条件的M的坐标有四个, 分别为:(0,),(3,0),(4,),(7,). 解法三:延长AP交抛物线于点M,由抛物线与圆的轴对称性可知,PM=PA. 又∵AM∥BC, ∴. ∴点M的纵坐标为. 即. 解得:x1=0(舍),x2=4. ∴点M的坐标为(4,). 点(7,)的求法同解法一. 综上可知,满足条件的M的坐标有四个, 分别为:(0,),(3,0),(4,),(7,). 【点评】本题考查了二次函数的综合运用.关键是由菱形、圆的性质,数形结合解题. 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2019/10/23 19:56:41;用户:18366185883;邮箱:18366185883;学号:22597006 第21页(共21页)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2011 山东省 德州市 中考 数学试卷
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文