四川省乐山市2018年中考数学真题试题(含解析).doc
《四川省乐山市2018年中考数学真题试题(含解析).doc》由会员分享,可在线阅读,更多相关《四川省乐山市2018年中考数学真题试题(含解析).doc(14页珍藏版)》请在咨信网上搜索。
四川省乐山市2018年中考数学真题试题 一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题目要求 1.﹣2的相反数是( ) A.﹣2 B.2 C. D.﹣ 解:﹣2的相反数是2. 故选B. 2.如图是由长方体和圆柱组成的几何体,它的俯视图是( ) A. B. C. D. 解:从上边看外面是正方形,里面是没有圆心的圆. 故选A. 3.方程组==x+y﹣4的解是( ) A. B. C. D. 解:由题可得:,消去x,可得 2(4﹣y)=3y,解得y=2,把y=2代入2x=3y,可得 x=3,∴方程组的解为. 故选D. 4.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是( ) A.EG=4GC B.EG=3GC C.EG=GC D.EG=2GC 解:∵DE∥FG∥BC,DB=4FB,∴. 故选B. 5.下列调查中,适宜采用普查方式的是( ) A.调查全国中学生心理健康现状 B.调查一片试验田里五种大麦的穗长情况 C.要查冷饮市场上冰淇淋的质量情况 D.调查你所在班级的每一个同学所穿鞋子的尺码情况 解:A.了解全国中学生心理健康现状调查范围广,适合抽样调查,故A错误; B.了解一片试验田里五种大麦的穗长情况调查范围广,适合抽样调查,故B错误; C.了解冷饮市场上冰淇淋的质量情况调查范围广,适合抽样调查,故C错误; D.调查你所在班级的每一个同学所穿鞋子的尺码情况,适合全面调查,故D正确; 故选D. 6.估计+1的值,应在( ) A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间 解:∵≈2.236,∴ +1≈3.236. 故选C. 7.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?” 如图所示,请根据所学知识计算:圆形木材的直径AC是( ) A.13寸 B.20寸 C.26寸 D.28寸 解:设⊙O的半径为r. 在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸. 故选C. 8.已知实数a、b满足a+b=2,ab=,则a﹣b=( ) A.1 B.﹣ C.±1 D.± 解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1. 故选C. 9.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于( ) A. B.6 C.3 D.12 解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合. 双曲线C3,的解析式为y=﹣ 过点P作PB⊥y轴于点B ∵PA=PB ∴B为OA中点,∴S△PAB=S△POB 由反比例函数比例系数k的性质,S△POB=3 ∴△POA的面积是6 故选B. 10.二次函数y=x2+(a﹣2)x+3的图象与一次函数y=x(1≤x≤2)的图象有且仅有一个交点,则实数a的取值范围是( ) A.a=3±2 B.﹣1≤a<2 C.a=3或﹣≤a<2 D.a=3﹣2或﹣1≤a<﹣ 解:由题意可知:方程x2+(a﹣2)x+3=x在1≤x≤2上只有一个解,即x2+(a﹣3)x+3=0在1≤x≤2上只有一个解,当△=0时,即(a﹣3)2﹣12=0 a=3±2 当a=3+2时,此时x=﹣,不满足题意,当a=3﹣2时,此时x=,满足题意,当△>0时,令y=x2+(a﹣3)x+3,令x=1,y=a+1,令x=2,y=2a+1 (a+1)(2a+1)≤0 解得:﹣1≤a≤,当a=﹣1时,此时x=1或3,满足题意; 当a=﹣时,此时x=2或x=,不满足题意. 综上所述:a=3﹣2或﹣1≤a<. 故选D. 二、填空题:本大题共6小题,每小题3分,共18分 11.计算:|﹣3|= . 解:|﹣3|=3. 故答案为:3. 12.化简+的结果是 解: + =﹣ = =﹣1. 故答案为:﹣1. 13.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为 . 解:设点C所表示的数为x. ∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6. 故答案为:﹣6. 14.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是 度. 解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°; △ACE中,AC=AE,则: ∠ACE=∠AEC=(180°﹣∠CAE)=67.5°; ∴∠BCE=∠ACE﹣∠ACB=22.5°. 故答案为:22.5. 15.如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为 . 解:过O′作O′M⊥OA于M,则∠O′MA=90°, ∵点O′的坐标是(1,),∴O′M=,OM=1. ∵AO=2,∴AM=2﹣1=1,∴tan∠O′AM==,∴∠O′AM=60°,即旋转角为60°,∴∠CAC′=∠OAO′=60°. ∵把△OAC绕点A按顺时针方向旋转到△O′AC′,∴S△OAC=S△O′AC′,∴阴影部分的面积S=S扇形OAO′+S△O′AC′﹣S△OAC﹣S扇形CAC′=S扇形OAO′﹣S扇形CAC′=﹣=. 故答案为:. 16.已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数. (1)当k=2时,直线l1、l2与x轴围成的三角形的面积S2= ; (2)当k=2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S2+S3+S4+……+S2018= . 解:当y=0时,有(k﹣1)x+k+1=0,解得:x=﹣1﹣,∴直线l1与x轴的交点坐标为(﹣1﹣,0),同理,可得出:直线l2与x轴的交点坐标为(﹣1﹣,0),∴两直线与x轴交点间的距离d=﹣1﹣﹣(﹣1﹣)=﹣. 联立直线l1、l2成方程组,得: ,解得:,∴直线l1、l2的交点坐标为(﹣1,﹣2). (1)当k=2时,d=﹣=1,∴S2=×|﹣2|d=1. 故答案为:1. (2)当k=3时,S3=﹣;当k=4时,S4=﹣;…;S2018=﹣,∴S2+S3+S4+……+S2018=﹣+﹣+﹣+…+﹣=﹣=2﹣=. 故答案为:. 三、简答题:本大题共3小题,每小题9分,共27分 17.计算:4cos45°+(π﹣2018)0﹣ 解:原式=4×+1﹣2=1. 18.解不等式组: 解:. ∵解不等式①得:x>0,解不等式②得:x<6,∴不等式组的解集为0<x<6. 19.如图,已知∠1=∠2,∠3=∠4,求证:BC=BD. 证明:∵∠ABD+∠3=180°∠ABC+∠4=180°,且∠3=∠4,∴∠ABD=∠ABC 在△ADB和△ACB中,,∴△ADB≌△ACB(ASA),∴BD=CD. 四、本大题共3小题,每小题10分,共30分 20.先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m是方程x2+x﹣2=0的根 解:原式=4m2﹣1﹣(m2﹣2m+1)+8m3÷(﹣8m) =4m2﹣1﹣m2+2m﹣1﹣m2 =2m2+2m﹣2 =2(m2+m﹣1). ∵m是方程x2+x﹣2=0的根,∴m2+m﹣2=0,即m2+m=2,则原式=2×(2﹣1)=2. 21.某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整. (1)收集数据 从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下: 甲班65 75 75 80 60 50 75 90 85 65 乙班90 55 80 70 55 70 95 80 65 70 (2)整理描述数据 按如下分数段整理、描述这两组样本数据: 在表中:m= ,n= . (3)分析数据 ①两组样本数据的平均数、中位数、众数如表所示: 在表中:x= ,y= . ②若规定测试成绩在80分(含80分)以上的叙述身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有 人. ③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率. 解:(2)由收集的数据得知m=3、n=2. 故答案为:3、2; (3)①甲班成绩为:50、60、65、65、75、75、75、80、85、90,∴甲班成绩的中位数x==75,乙班成绩70分出现次数最多,所以的众数y=70. 故答案为:75、70; ②估计乙班50名学生中身体素质为优秀的学生有50×=20人; ③列表如下: 由表可知,共有6种等可能结果,其中抽到的2名同学是1男1女的有3种结果,所以抽到的2名同学是1男1女的概率为=. 22.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段. 请根据图中信息解答下列问题: (1)求这天的温度y与时间x(0≤x≤24)的函数关系式; (2)求恒温系统设定的恒定温度; (3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害? 解:(1)设线段AB解析式为y=k1x+b(k≠0) ∵线段AB过点(0,10),(2,14) 代入得 解得 ∴AB解析式为:y=2x+10(0≤x<5) ∵B在线段AB上当x=5时,y=20 ∴B坐标为(5,20) ∴线段BC的解析式为:y=20(5≤x<10) 设双曲线CD解析式为:y=(k2≠0) ∵C(10,20) ∴k2=200 ∴双曲线CD解析式为:y=(10≤x≤24) ∴y关于x的函数解析式为: y= (2)由(1)恒温系统设定恒温为20°C (3)把y=10代入y=中,解得:x=20 ∴20﹣10=10 答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害. 五、本大题共2小题,每小题10分,共20分 23.已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0). (1)求证:无论m为任何非零实数,此方程总有两个实数根; (2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值; (3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值. (1)证明:由题意可得: △=(1﹣5m)2﹣4m×(﹣5) =1+25m2﹣20m+20m =25m2+1>0,故无论m为任何非零实数,此方程总有两个实数根; (2)解:mx2+(1﹣5m)x﹣5=0,解得:x1=﹣,x2=5,由|x1﹣x2|=6,得|﹣﹣5|=6,解得:m=1或m=﹣; (3)解:由(2)得:当m>0时,m=1,此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴ =2,即2a=4﹣n,∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16. 24.如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC. (1)求证:AC∥PO; (2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求的值. (1)证明:∵PA、PB是⊙O的两条切线,A、B是切点,∴PA=PB,且PO平分∠BPA,∴PO⊥AB. ∵BC是直径,∴∠CAB=90°,∴AC⊥AB,∴AC∥PO; (2)解:连结OA、DF,如图, ∵PA、PB是⊙O的两条切线,A、B是切点,∴∠OAQ=∠PBQ=90°. 在Rt△OAQ中,OA=OC=3,∴OQ=5. 由QA2+OA2=OQ2,得QA=4. 在Rt△PBQ中,PA=PB,QB=OQ+OB=8,由QB2+PB2=PQ2,得82+PB2=(PB+4)2,解得PB=6,∴PA=PB=6. ∵OP⊥AB,∴BF=AF=AB. 又∵D为PB的中点,∴DF∥AP,DF=PA=3,∴△DFE∽△QEA,∴ ==,设AE=4t,FE=3t,则AF=AE+FE=7t,∴BE=BF+FE=AF+FE=7t+3t=10t,∴ ==. 六、本大题共2小题,第25题12分,第26题13分,共25分 25.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数: (1)如图1,若k=1,则∠APE的度数为 ; (2)如图2,若k=,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数. (3)如图3,若k=,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由. 解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD. ∵AC=BD,CD=AE,∴AF=AC. ∵∠FAC=∠C=90°,∴△FAE≌△ACD,∴EF=AD=BF,∠FEA=∠ADC. ∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EHD. ∵AD∥BF,∴∠EFB=90°. ∵EF=BF,∴∠FBE=45°,∴∠APE=45°. 故答案为:45°. (2)(1)中结论不成立,理由如下: 如图2,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD. ∵AC=BD,CD=AE,∴. ∵BD=AF,∴. ∵∠FAC=∠C=90°,∴△FAE∽△ACD,∴ =,∠FEA=∠ADC. ∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD.∵AD∥BF,∴∠EFB=90°.在Rt△EFB中,tan∠FBE=,∴∠FBE=30°,∴∠APE=30°,(3)(2)中结论成立,如图3,作EH∥CD,DH∥BE,EH,DH相交于H,连接AH,∴∠APE=∠ADH,∠HEC=∠C=90°,四边形EBDH是平行四边形,∴BE=DH,EH=BD. ∵AC=BD,CD=AE,∴. ∵∠HEA=∠C=90°,∴△ACD∽△HEA,∴,∠ADC=∠HAE. ∵∠CAD+∠ADC=90°,∴∠HAE+∠CAD=90°,∴∠HAD=90°.在Rt△DAH中,tan∠ADH==,∴∠ADH=30°,∴∠APE=30°. 26.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=. (1)求抛物线的解析式; (2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒. ①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由. ②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由. 解:(1)∵OA=1,OB=4 ∴A(1,0),B(﹣4,0) 设抛物线的解析式为y=a(x+4)(x﹣1) ∵点C(0,﹣)在抛物线上 ∴﹣ 解得a= ∴抛物线的解析式为y= (2)存在t,使得△ADC与△PQA相似. 理由:①在Rt△AOC中,OA=1,OC= 则tan∠ACO= ∵tan∠OAD= ∴∠OAD=∠ACO ∵直线l的解析式为y= ∴D(0,﹣) ∵点C(0,﹣) ∴CD= 由AC2=OC2+OA2,得AC= 在△AQP中,AP=AB﹣PB=5﹣2t,AQ=t 由∠PAQ=∠ACD,要使△ADC与△PQA相似 只需或 则有或 解得t1=,t2= ∵t1<2.5,t2<2.5 ∴存在t=或t=,使得△ADC与△PQA相似 ②存在t,使得△APQ与△CAQ的面积之和最大 理由:作PF⊥AQ于点F,CN⊥AQ于N 在△APF中,PF=AP•sin∠PAF= 在△AOD中,由AD2=OD2+OA2,得AD= 在△ADC中,由S△ADC= ∴CN= ∴S△AQP+S△AQC= =﹣ ∴当t=时,△APQ与△CAQ的面积之和最大 14- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川省 乐山市 2018 年中 数学 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文