2017年湖北省十堰市中考数学试卷(含解析版).docx
《2017年湖北省十堰市中考数学试卷(含解析版).docx》由会员分享,可在线阅读,更多相关《2017年湖北省十堰市中考数学试卷(含解析版).docx(38页珍藏版)》请在咨信网上搜索。
2017年湖北省十堰市中考数学试卷 一、选择题: 1.(3分)气温由﹣2℃上升3℃后是( )℃. A.1 B.3 C.5 D.﹣5 2.(3分)如图的几何体,其左视图是( ) A. B. C. D. 3.(3分)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=( ) A.40° B.50° C.60° D.70° 第3题图 第8题图 第9题图 4.(3分)下列运算正确的是( ) A.2+3=5 B.22×32=62 C.8÷2=2 D.32-2=3 5.(3分)某交警在一个路口统计的某时段来往车辆的车速情况如表: 车速(km/h) 48 49 50 51 52 车辆数(辆) 5 4 8 2 1 则上述车速的中位数和众数分别是( ) A.50,8 B.50,50 C.49,50 D.49,8 6.(3分)下列命题错误的是( ) A.对角线互相平分的四边形是平行四边形 B.对角线相等的平行四边形是矩形 C.一条对角线平分一组对角的四边形是菱形 D.对角线互相垂直的矩形是正方形 7.(3分)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是( ) A.90x=60x-6 B.90x=60x+6 C.90x-6=60x D.90x+6=60x 8.(3分)如图,已知圆柱的底面直径BC=6π,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为( ) A.32 B.35 C.65 D.62 9.(3分)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为( ) A.32 B.36 C.38 D.40 10.(3分)如图,直线y=3x﹣6分别交x轴,y轴于A,B,M是反比例函数y=kx(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=43,则k的值为( ) A.﹣3 B.﹣4 C.﹣5 D.﹣6 二、填空题 11.(3分)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为 . 12.(3分)若a﹣b=1,则代数式2a﹣2b﹣1的值为 . 13.(3分)如图,菱形ABCD中,AC交BD于O,OE⊥BC于E,连接OE,若∠ABC=140°,则∠OED= . 第13题图 第14题图 第15题图 14.(3分)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=52,则BC的长为 . 15.(3分)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为 . 16.(3分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=43NF;③BMMG=38;④S四边形CGNF=12S四边形ANGD.其中正确的结论的序号是 . 三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(5分)计算:|﹣2|+3-8﹣(﹣1)2017. 18.(6分)化简:(2a+1+a+2a2-1)÷aa-1. 19.(7分)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险? 20.(9分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图. 请根据以上信息,回答下列问题: (1)杨老师采用的调查方式是 (填“普查”或“抽样调查”); (2)请你将条形统计图补充完整,并估计全校共征集多少件作品? (3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率. 21.(7分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2. (1)求实数k的取值范围; (2)若x1,x2满足x12+x22=16+x1x2,求实数k的值. 22.(8分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱. (1)写出y与x中间的函数关系书和自变量x的取值范围; (2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元? 23.(8分)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E. (1)如图1,若CD=CB,求证:CD是⊙O的切线; (2)如图2,若F点在OB上,且CD⊥DF,求AEAF的值. 24.(10分)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E. (1)如图1,若点B在OP上,则 ①AC OE(填“<”,“=”或“>”); ②线段CA、CO、CD满足的等量关系式是 ; (2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由; (3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式 . 25.(12分)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C. (1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴; (2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=103S△ACD,求点E的坐标; (3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由. 2017年湖北省十堰市中考数学试卷 参考答案与试题解析 一、选择题: 1.(3分)(2017•十堰)气温由﹣2℃上升3℃后是( )℃. A.1 B.3 C.5 D.﹣5 【考点】19:有理数的加法.菁优网版权所有 【分析】根据有理数的加法,可得答案. 【解答】解:由题意,得 ﹣2+3=+(3﹣2)=1, 故选:A. 【点评】本题考查了有理数的加法,异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减较小的绝对值. 2.(3分)(2017•十堰)如图的几何体,其左视图是( ) A. B. C. D. 【考点】U2:简单组合体的三视图.菁优网版权所有 【分析】根据从左边看得到的图象是左视图,可得答案. 【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形, 故选:B. 【点评】本题考查了简单组合体的三视图,从左边看得到的图象是左视图. 3.(3分)(2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=( ) A.40° B.50° C.60° D.70° 【考点】JA:平行线的性质;J3:垂线.菁优网版权所有 【分析】先根据平行线的性质,得到∠B=∠CDE=40°,直观化FG⊥BC,即可得出∠FGB的度数. 【解答】解:∵AB∥DE,∠CDE=40°, ∴∠B=∠CDE=40°, 又∵FG⊥BC, ∴∠FGB=90°﹣∠B=50°, 故选:B. 【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 4.(3分)(2017•十堰)下列运算正确的是( ) A.2+3=5 B.22×32=62 C.8÷2=2 D.32-2=3 【考点】79:二次根式的混合运算.菁优网版权所有 【专题】11 :计算题. 【分析】根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对D进行判断. 【解答】解:A、2与3不能合并,所以A选项错误; B、原式=6×2=12,所以B选项错误; C、原式=8÷2=2,所以C选项准确; D、原式=22,所以D选项错误. 故选C. 【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 5.(3分)(2017•十堰)某交警在一个路口统计的某时段来往车辆的车速情况如表: 车速(km/h) 48 49 50 51 52 车辆数(辆) 5 4 8 2 1 则上述车速的中位数和众数分别是( ) A.50,8 B.50,50 C.49,50 D.49,8 【考点】W5:众数;W4:中位数.菁优网版权所有 【分析】把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数. 【解答】解:要求一组数据的中位数, 把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50, 所以中位数是50, 在这组数据中出现次数最多的是50, 即众数是50. 故选:B. 【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求. 6.(3分)(2017•十堰)下列命题错误的是( ) A.对角线互相平分的四边形是平行四边形 B.对角线相等的平行四边形是矩形 C.一条对角线平分一组对角的四边形是菱形 D.对角线互相垂直的矩形是正方形 【考点】O1:命题与定理.菁优网版权所有 【分析】利用平行四边形、矩形、菱形及正方形的判定定理分别判断后即可确定正确的选项. 【解答】解:A、对角线互相平分的四边形是平行四边形,正确,不符合题意; B、对角线相等的平行四边形是矩形,正确,不符合题意; C、一条对角线平分一组对角的四边形可能是菱形或者正方形,错误,符合题意; D、对角线互相垂直的矩形是正方形,正确,不符合题意, 故选C. 【点评】本题考查了命题与定理的知识,解题的关键是了解平行四边形、矩形、菱形及正方形的判定定理,难度不大. 7.(3分)(2017•十堰)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是( ) A.90x=60x-6 B.90x=60x+6 C.90x-6=60x D.90x+6=60x 【考点】B6:由实际问题抽象出分式方程.菁优网版权所有 【分析】设甲每小时做x个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程. 【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件, 由题意得,90x=60x-6. 故选A. 【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程. 8.(3分)(2017•十堰)如图,已知圆柱的底面直径BC=6π,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为( ) A.32 B.35 C.65 D.62 【考点】KV:平面展开﹣最短路径问题.菁优网版权所有 【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解. 【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长. 在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3, 所以AC=32, ∴从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为2AC=62, 故选D. 【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答. 9.(3分)(2017•十堰)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为( ) A.32 B.36 C.38 D.40 【考点】37:规律型:数字的变化类.菁优网版权所有 【分析】由a1=a7+3(a8+a9)+a10知要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10中不能有6,据此对于a7、a8,分别取8、10、12检验可得,从而得出答案. 【解答】解:∵a1=a2+a3 =a4+a5+a5+a6 =a7+a8+a8+a9+a8+a9+a9+a10 =a7+3(a8+a9)+a10, ∴要使a1取得最小值,则a8+a9应尽可能的小, 取a8=2、a9=4, ∵a5=a8+a9=6, 则a7、a10中不能有6, 若a7=8、a10=10,则a4=10=a10,不符合题意,舍去; 若a7=10、a10=8,则a4=12、a6=4+8=12,不符合题意,舍去; 若a7=10、a10=12,则a4=10+2=12、a6=4+12=16、a2=12+6=18、a3=6+16=22、a1=18+22=40,符合题意; 综上,a1的最小值为40, 故选:D. 【点评】本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键. 10.(3分)(2017•十堰)如图,直线y=3x﹣6分别交x轴,y轴于A,B,M是反比例函数y=kx(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=43,则k的值为( ) A.﹣3 B.﹣4 C.﹣5 D.﹣6 【考点】G8:反比例函数与一次函数的交点问题.菁优网版权所有 【分析】过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,然后求出OA与OB的长度,即可求出∠OAB的正弦值与余弦值,再设M(x,y),从而可表示出BD与AC的长度,根据AC•BD=43列出即可求出k的值. 【解答】解:过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F, 令x=0代入y=3x﹣6, ∴y=﹣6, ∴B(0,﹣6), ∴OB=6, 令y=0代入y=3x﹣6, ∴x=23, ∴(23,0), ∴OA=23, ∴勾股定理可知:AB=43, ∴sin∠OAB=OBAB=32,cos∠OAB=OAAB=12 设M(x,y), ∴CF=﹣y,ED=x, ∴sin∠OAB=CFAC, ∴AC=﹣233y, ∵cos∠OAB=cos∠EDB=EDBD, ∴BD=2x, ∵AC•BD=43, ∴﹣233y×2x=43, ∴xy=﹣3, ∵M在反比例函数的图象上, ∴k=xy=﹣3, 故选(A) 【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB的锐角三角函数值求出BD、AC,本题属于中等题型. 二、填空题 11.(3分)(2017•十堰)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为 2.5×10﹣6 . 【考点】1J:科学记数法—表示较小的数.菁优网版权所有 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:0.0000025用科学记数法表示为2.5×10﹣6, 故答案为:2.5×10﹣6. 【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 12.(3分)(2017•十堰)若a﹣b=1,则代数式2a﹣2b﹣1的值为 1 . 【考点】33:代数式求值.菁优网版权所有 【分析】原式前两项提取2变形后,将a﹣b=1代入计算即可求出值. 【解答】解:∵a﹣b=1, ∴原式=2(a﹣b)﹣1=2﹣1=1. 故答案为:1. 【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键. 13.(3分)(2017•十堰)如图,菱形ABCD中,AC交BD于O,OE⊥BC于E,连接OE,若∠ABC=140°,则∠OED= 20° . 【考点】L8:菱形的性质.菁优网版权所有 【分析】由菱形的性质可知O为BD中点,所以OE为直角三角形BED斜边上的中线,由此可得OE=OB,根据等腰三角形的性质和已知条件即可求出∠OED的度数. 【解答】解: ∵四边形ABCD是菱形, ∴DO=OB, ∵DE⊥BC于E, ∴OE为直角三角形BED斜边上的中线, ∴OE=12BD, ∴OB=OE, ∴∠OBE=∠OEB, ∵∠ABC=140°, ∴∠OBE=70°, ∴∠OED=90°﹣70°=20°, 故答案为:20°. 【点评】本题考查了菱形的性质、直角三角形斜边上中线的性质,得到OE为直角三角形BED斜边上的中线是解题的关键. 14.(3分)(2017•十堰)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=52,则BC的长为 8 . 【考点】M5:圆周角定理;KQ:勾股定理.菁优网版权所有 【分析】连接BD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长. 【解答】解:连接BD, ∵∠ACB=90°, ∴AB是⊙O的直径. ∵ACB的角平分线交⊙O于D, ∴∠ACD=∠BCD=45°, ∴AD=BD=52. ∵AB是⊙O的直径, ∴△ABD是等腰直角三角形, ∴AB=AD2+BD2=(52)2+(52)2=10. ∵AC=6, ∴BC=AB2-AC2=102-62=8. 故答案为:8. 【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键. 15.(3分)(2017•十堰)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为 1<x<52 . 【考点】FD:一次函数与一元一次不等式.菁优网版权所有 【分析】根据题意得由OB=4,OC=6,根据直线y=kx平行于直线y=kx﹣6,得到BAAD=BOOC=46=23,分别过A,D作AM⊥x轴于M,DN⊥x轴于N,则AM∥DN∥y轴,根据平行线分线段成比例定理得到OMMN=BAAD=23,得到ON=52,求得D点的横坐标是52,于是得到结论. 【解答】解:如图,由y=kx﹣6与y=ax+4得OB=4,OC=6, ∵直线y=kx平行于直线y=kx﹣6, ∴BAAD=BOOC=46=23, 分别过A,D作AM⊥x轴于M,DN⊥x轴于N, 则AM∥DN∥y轴, ∴OMMN=BAAD=23, ∵A(1,k), ∴OM=1, ∴MN=32, ∴ON=52, ∴D点的横坐标是52, ∴1<x<52时,kx﹣6<ax+4<kx, 故答案为:1<x<52. 【点评】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键. 16.(3分)(2017•十堰)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=43NF;③BMMG=38;④S四边形CGNF=12S四边形ANGD.其中正确的结论的序号是 ①③ . 【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.菁优网版权所有 【分析】①易证△ABF≌△BCG,即可解题; ②易证△BNF∽△BCG,即可求得BNNF的值,即可解题; ③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解题; ④连接AG,FG,根据③中结论即可求得S四边形CGNF和S四边形ANGD,即可解题. 【解答】解:①∵四边形ABCD为正方形, ∴AB=BC=CD, ∵BE=EF=FC,CG=2GD, ∴BF=CG, ∵在△ABF和△BCG中,&AB=BC&∠ABF=∠BCG=90°&BF=CG, ∴△ABF≌△BCG, ∴∠BAF=∠CBG, ∵∠BAF+∠BFA=90°, ∴∠CBG+∠BFA=90°,即AF⊥BG;①正确; ②∵在△BNF和△BCG中,&∠CBG=∠NBF&∠BCG=∠BNF=90°, ∴△BNF∽△BCG,∴BNNF=BCCG=32, ∴BN=23NF;②错误; ③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1, AF=AB2+BF2=13, ∵S△ABF=12AF•BN=12AB•BF, ∴BN=61313,NF=23BN=41313, ∴AN=AF﹣NF=91313, ∵E是BF中点, ∴EH是△BFN的中位线, ∴EH=31313,NH=21313,BN∥EH, ∴AH=111313,ANAH=MNEH,解得:MN=2713143, ∴BM=BN﹣MN=31311,MG=BG﹣BM=81311, ∴BMMG=38;③正确; ④连接AG,FG,根据③中结论, 则NG=BG﹣BN=71313, ∵S四边形CGNF=S△CFG+S△GNF=12CG•CF+12NF•NG=1+1413=2713, S四边形ANGD=S△ANG+S△ADG=12AN•GN+12AD•DG=2713+32=9326, ∴S四边形CGNF≠12S四边形ANGD,④错误; 故答案为 ①③. 【点评】本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边比例相等的性质,本题中令AB=3求得AN,BN,NG,NF的值是解题的关键. 三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(5分)(2017•十堰)计算:|﹣2|+3-8﹣(﹣1)2017. 【考点】2C:实数的运算.菁优网版权所有 【专题】11 :计算题;511:实数. 【分析】原式利用绝对值的代数意义,立方根定义,以及乘方的意义计算即可得到结果. 【解答】解:原式=2﹣2+1=1. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 18.(6分)(2017•十堰)化简:(2a+1+a+2a2-1)÷aa-1. 【考点】6C:分式的混合运算.菁优网版权所有 【分析】根据分式的加法和除法可以解答本题. 【解答】解:(2a+1+a+2a2-1)÷aa-1 =2(a-1)+a+2(a+1)(a-1)⋅a-1a =2a-2+a+2a(a+1) =3aa(a+1) =3a+1. 【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 19.(7分)(2017•十堰)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险? 【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.菁优网版权所有 【分析】过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等边对等角得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AD即可. 【解答】解:只要求出A到BD的最短距离是否在以A为圆心,以8海里的圆内或圆上即可, 如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离, ∵∠CAD=30°,∠CAB=60°, ∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°, ∴∠ABD=∠BAD, ∴BD=AD=12海里, ∵∠CAD=30°,∠ACD=90°, ∴CD=12AD=6海里, 由勾股定理得:AC=122-62=63≈10.392>8, 即渔船继续向正东方向行驶,没有触礁的危险. 【点评】考查了勾股定理的应用和解直角三角形,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想. 20.(9分)(2017•十堰)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图. 请根据以上信息,回答下列问题: (1)杨老师采用的调查方式是 抽样调查 (填“普查”或“抽样调查”); (2)请你将条形统计图补充完整,并估计全校共征集多少件作品? (3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率. 【考点】X6:列表法与树状图法;V2:全面调查与抽样调查;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.菁优网版权所有 【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查. (2)由题意得:所调查的4个班征集到的作品数为:6÷90360=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图; (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案. 【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查. 故答案为抽样调查. (2)所调查的4个班征集到的作品数为:6÷90360=24件, 平均每个班244=6件,C班有10件, ∴估计全校共征集作品6×30=180件. 条形图如图所示, (3)画树状图得: ∵共有20种等可能的结果,两名学生性别相同的有8种情况, ∴恰好抽中一男一女的概率为:820=25. 【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式. 21.(7分)(2017•十堰)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2. (1)求实数k的取值范围; (2)若x1,x2满足x12+x22=16+x1x2,求实数k的值. 【考点】AB:根与系数的关系;AA:根的判别式.菁优网版权所有 【分析】(1)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k的取值范围; (2)由根与系数的关系可得x1+x2=1﹣2k、x1•x2=k2﹣1,将其代入x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2中,解之即可得出k的值. 【解答】解:(1)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2, ∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0, 解得:k≤54, ∴实数k的取值范围为k≤54. (2)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2, ∴x1+x2=1﹣2k,x1•x2=k2﹣1. ∵x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2, ∴(1﹣2k)2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k﹣12=0, 解得:k=﹣2或k=6(不符合题意,舍去). ∴实数k的值为﹣2. 【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=﹣4k+5≥0;(2)根据根与系数的关系结合x12+x22=16+x1x2,找出关于k的一元二次方程. 22.(8分)(2017•十堰)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱. (1)写出y与x中间的函数关系书和自变量x的取值范围; (2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元? 【考点】HE:二次函数的应用.菁优网版权所有 【分析】(1)根据价格每降低1元,平均每天多销售10箱,由每箱降价x元,多卖10x,据此可以列出函数关系式; (2)由利润=(售价﹣成本)×销售量列出函数关系式,求出最大值. 【解答】解:(1)根据题意,得:y=60+10x, 由36﹣x≥24得x≤12, ∴1≤x≤12,且x为整数; (2)设所获利润为W, 则W=(36﹣x﹣24)(10x+60) =﹣10x2+60x+720 =﹣10(x﹣3)2+810, ∴当x=3时,W取得最大值,最大值为810, 答:超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元. 【点评】本题主要考查二次函数的应用,由利润=(售价﹣成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键. 23.(8分)(2017•十堰)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E. (1)如图1,若CD=CB,求证:CD是⊙O的切线; (2)如图2,若F点在OB上,且CD⊥DF,求AEAF的值. 【考点】S9:相似三角形的判定与性质;M2:垂径定理;ME:切线的判定与性质.菁优网版权所有 【分析】(1)连接DO,CO,易证△CDO≌△CBO,即可解题; (2)连接AD,易证△ADF∽△BDC和△ADE∽△BDA,根据相似三角形对应边比例相等的性质即可解题. 【解答】解:(1)连接DO,CO, ∵BC⊥AB于B, ∴∠ABC=90°, 在△CDO与△CBO中,&CD=CB&OD=OB&OC=OC, ∴△CDO≌△CBO, ∴∠CDO=∠CBO=90°, ∴OD⊥CD, ∴CD是⊙O的切线; (2)连接AD, ∵AB是直径,∴∠ADB=90°, ∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°, ∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°, ∴∠ADF=∠BDC,∠DAB=∠CBD, ∵在△ADF和△BDC中,&∠ADF=∠BDC&∠DAB=∠CBD, ∴△ADF∽△BDC, ∴ADBD=AFBC, ∵∠DAE+∠DAB=90°,∠E+∠DAE=90°, ∴∠E=∠DAB, ∵在△ADE和△BDA中,&∠ADE=∠BDA=90°&∠E=∠DAB, ∴△ADE∽△BDA, ∴AEAB=ADBD, ∴AEAB=AFBC,即AEAF=ABBC, ∵AB=BC, ∴AEAF=1. 【点评】本题考查了相似三角形的判定和性质,考查了全等三角形的判定和性质,本题中求证△ADF∽△BDC和△ADE∽△BDA是解题的关键. 24.(10分)(2017•十堰)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E. (1)如图1,若点B在OP上,则 ①AC = OE(填“<”,“=”或“>”); ②线段CA、CO、CD满足的等量关系式是 AC2+CO2=CD2 ; (2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由; (3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式 CO﹣CA=2CD . 【考点】RB:几何变换综合题.菁优网版权所有 【分析】(1)①如图1,证明AC=OC和OC=OE可得结论; ②根据勾股定理可得:AC2+CO2=CD2; (2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论; (3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC﹣AC)2=2CD2,开方后是:OC﹣AC=2CD. 【解答】解:(1)①AC=OE, 理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°, ∴∠ABO=∠AOB=45°, ∵OP⊥MN, ∴∠COP=90°, ∴∠AOC=45°, ∵AC∥OP, ∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°, ∴AC=OC, 连接AD, ∵BD=OD, ∴AD=OD,AD⊥OB, ∴AD∥OC, ∴四边形ADOC是正方形, ∴∠DCO=45°, ∴AC=OD, ∴∠DEO=45°, ∴CD=DE, ∴OC=OE, ∴AC=OE; ②在Rt△CDO中, ∵CD2=OC2+OD2, ∴CD2=AC2+OC2; 故答案为:AC2+CO2=CD2; (2)如图2,(1)中的结论②不成立,理由是: 连接AD,延长CD交OP于F,连接EF, ∵AB=AO,D为OB的中点, ∴AD⊥OB, ∴∠ADO=90°, ∵∠CDE=90°, ∴∠ADO=∠CDE, ∴∠ADO﹣∠CDO=∠CDE﹣∠CDO, 即∠ADC=∠EDO, ∵∠ADO=∠ACO=90°, ∴∠ADO+∠ACO=180°, ∴A、D、O、C四点共圆, ∴∠ACD=∠AOB, 同理得:∠EFO=∠EDO, ∴∠EFO=∠AOC, ∵△ABO是等腰直角三角形, ∴∠AOB=45°, ∴∠DCO=45°, ∴△COF和△CDE是等腰直角三角形, ∴OC=OF, ∵∠ACO=∠EOF=90°, ∴△ACO≌△EO- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 湖北省 十堰市 中考 数学试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文