2020年山东省枣庄市中考数学试卷.doc
《2020年山东省枣庄市中考数学试卷.doc》由会员分享,可在线阅读,更多相关《2020年山东省枣庄市中考数学试卷.doc(21页珍藏版)》请在咨信网上搜索。
2020年山东省枣庄市中考数学试卷 一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分. 1.(3分)﹣的绝对值是( ) A.﹣ B.﹣2 C. D.2 2.(3分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为( ) A.10° B.15° C.18° D.30° 3.(3分)计算﹣﹣(﹣)的结果为( ) A.﹣ B. C.﹣ D. 4.(3分)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是( ) A.|a|<1 B.ab>0 C.a+b>0 D.1﹣a>1 5.(3分)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是( ) A. B. C. D. 6.(3分)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为( ) A.8 B.11 C.16 D.17 7.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是( ) A.ab B.(a+b)2 C.(a﹣b)2 D.a2﹣b2 8.(3分)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是( ) A. B. C. D. 9.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是( ) A.x=4 B.x=5 C.x=6 D.x=7 10.(3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是( ) A.(﹣,3) B.(﹣3,) C.(﹣,2+) D.(﹣1,2+) 11.(3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是( ) A.3 B.4 C.5 D.6 12.(3分)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论: ①ac<0; ②b2﹣4ac>0; ③2a﹣b=0; ④a﹣b+c=0. 其中,正确的结论有( ) A.1个 B.2个 C.3个 D.4个 二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分. 13.(4分)若a+b=3,a2+b2=7,则ab= . 14.(4分)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a= . 15.(4分)如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B= . 16.(4分)人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是 m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19) 17.(4分)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是 . 18.(4分)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S= . 三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤. 19.(8分)解不等式组并求它的所有整数解的和. 20.(8分)欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式. (1)观察下列多面体,并把下表补充完整: 名称 三棱锥 三棱柱 正方体 正八面体 图形 顶点数V 4 6 8 棱数E 6 12 面数F 4 5 8 (2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式: . 21.(8分)2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图. 学生立定跳远测试成绩的频数分布表 分组 频数 1.2≤x<1.6 a 1.6≤x<2.0 12 2.0≤x<2.4 b 2.4≤x<2.8 10 请根据图表中所提供的信息,完成下列问题: (1)表中a= ,b= ; (2)样本成绩的中位数落在 范围内; (3)请把频数分布直方图补充完整; (4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人? 22.(8分)如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A. (1)求反比例函数的表达式; (2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,连接OB,求△ABO的面积. 23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF. (1)求证:BF是⊙O的切线; (2)若⊙O的直径为4,CF=6,求tan∠CBF. 24.(10分)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N. (1)如图1,若CE=CF,求证:DE=DF; (2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立; (3)若CD=2,CF=,求DN的长. 25.(10分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q. (1)求抛物线的表达式; (2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少? (3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由. 2020年山东省枣庄市中考数学试卷 参考答案与试题解析 一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分. 1.【分析】根据绝对值的定义直接计算即可解答. 【解答】解:﹣的绝对值为. 故选:C. 【点评】本题主要考查绝对值的性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 2.【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=60°,进而得出答案. 【解答】解:由题意可得:∠EDF=45°,∠ABC=30°, ∵AB∥CF, ∴∠ABD=∠EDF=45°, ∴∠DBC=45°﹣30°=15°. 故选:B. 【点评】此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键. 3.【分析】根据有理数的减法法则计算即可. 【解答】解:﹣﹣(﹣)==﹣. 故选:A. 【点评】本题主要考查了有理数的减法,熟记运算法则是解答本题的关键.减去一个数,等于加上这个数的相反数. 4.【分析】直接利用a,b在数轴上位置进而分别分析得出答案. 【解答】解:A、|a|>1,故本选项错误; B、∵a<0,b>0,∴ab<0,故本选项错误; C、a+b<0,故本选项错误; D、∵a<0,∴1﹣a>1,故本选项正确; 故选:D. 【点评】此题主要考查了实数与数轴,正确结合数轴分析是解题关键. 5.【分析】列举出所有可能出现的结果,进而求出“两次都是白球”的概率. 【解答】解:用列表法表示所有可能出现的情况如下: 共有9种可能出现的结果,其中两次都是白球的有4种, ∴P(两次都是白球)=, 故选:A. 【点评】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果数是正确解答的关键. 6.【分析】在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为 【解答】解:∵DE垂直平分AB, ∴AE=BE, ∴△ACE的周长=AC+CE+AE =AC+CE+BE =AC+BC =5+6 =11. 故选:B. 【点评】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等. 7.【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得. 【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b, 则面积是(a﹣b)2. 故选:C. 【点评】本题考查了列代数式,正确表示出小正方形的边长是关键. 8.【分析】根据平移,旋转的性质判断即可. 【解答】解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折,平移,旋转得到. 故选:B. 【点评】本题考查利用旋转,平移设计图案,解题的关键是熟练掌握基本知识,属于中考常考题型. 9.【分析】所求方程利用题中的新定义化简,求出解即可. 【解答】解:根据题意,得=﹣1, 去分母得:1=2﹣(x﹣4), 解得:x=5, 经检验x=5是分式方程的解. 故选:B. 【点评】此题考查了解分式方程,弄清题中的新定义是解本题的关键. 10.【分析】如图,过点B′作B′H⊥y轴于H.解直角三角形求出′H,B′H即可. 【解答】解:如图,过点B′作B′H⊥y轴于H. 在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°, ∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=, ∴OH=2+1=3, ∴B′(﹣,3), 故选:A. 【点评】本题考查坐标与图形变化﹣旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 11.【分析】根据折叠的性质得到AF=AB,∠AFE=∠B=90°,根据等腰三角形的性质得到AF=CF,于是得到结论. 【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处, ∴AF=AB,∠AFE=∠B=90°, ∴EF⊥AC, ∵∠EAC=∠ECA, ∴AE=CE, ∴AF=CF, ∴AC=2AB=6, 故选:D. 【点评】本题考查了翻折变换的性质,矩形的性质,熟练掌握折叠的性质是解题的关键. 12.【分析】根据抛物线的开口方向、对称轴、与x轴、y轴的交点,综合进行判断即可. 【解答】解:抛物线开口向下,a<0,对称轴为x=﹣=1,因此b>0,与y轴交于正半轴,因此c>0, 于是有:ac<0,因此①正确; 由x=﹣=1,得2a+b=0,因此③不正确, 抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确, 由对称轴x=1,抛物线与x 轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确, 综上所述,正确的结论有①②④, 故选:C. 【点评】本题考查二次函数的图象和性质,理解二次函数的图象与系数的关系是正确判断的前提. 二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分. 13.【分析】根据完全平方公式,可得答案. 【解答】解:(a+b)2=32=9, (a+b)2=a2+b2+2ab=9. ∵a2+b2=7, ∴2ab=2, ab=1, 故答案为:1. 【点评】本题考查了完全平方公式,利用完全平方公式是解题关键. 14.【分析】根据一元二次方程的解的定义把x=0代入原方程得到关于a的一元二次方程,解得a=±1,然后根据一元二次方程的定义确定a的值. 【解答】解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1, ∵a﹣1≠0, ∴a=﹣1. 故答案为﹣1. 【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的定义. 15.【分析】直接利用切线的性质得出∠OAP=90°,再利用三角形内角和定理得出∠AOP=54°,结合圆周角定理得出答案. 【解答】解:∵PA切⊙O于点A, ∴∠OAP=90°, ∵∠P=36°, ∴∠AOP=54°, ∴∠B=∠AOP=27°. 故答案为:27°. 【点评】此题主要考查了切线的性质以及圆周角定理,正确得出∠AOP的度数是解题关键. 16.【分析】在Rt△ADC中,求出AD即可. 【解答】解:∵AB=AC=2m,AD⊥BC, ∴∠ADC=90°, ∴AD=AC•sin50°=2×0.77≈1.5(m), 故答案为1.5. 【点评】本题考查解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题. 17.【分析】连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论. 【解答】解:如图,连接BD交AC于点O, ∵四边形ABCD为正方形, ∴BD⊥AC,OD=OB=OA=OC, ∵AE=CF=2, ∴OA﹣AE=OC﹣CF,即OE=OF, ∴四边形BEDF为平行四边形,且BD⊥EF, ∴四边形BEDF为菱形, ∴DE=DF=BE=BF, ∵AC=BD=8,OE=OF==2, 由勾股定理得:DE===2, ∴四边形BEDF的周长=4DE=4×=8, 故答案为:8. 【点评】本题主要考查正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键. 18.【分析】分别统计出多边形内部的格点数a和边界上的格点数b,再代入公式S=a+b﹣1,即可得出格点多边形的面积. 【解答】解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积, ∴a=4,b=6, ∴该五边形的面积S=4+×6﹣1=6, 故答案为:6. 【点评】本题考查格点多边形面积的计算,解题的关键是根据图形正确统计出a,b的值. 三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤. 19.【分析】先求出两个不等式的解集,再求其公共解,然后找出整数求和即可. 【解答】解:, 由①得,x≥﹣3, 由②得,x<2, 所以,不等式组的解集是﹣3≤x<2, 所以,它的整数解为:﹣3,﹣2,﹣1,0,1, 所以,所有整数解的和为﹣5. 【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 20.【分析】(1)根据图形数出顶点数,棱数,面数,填入表格即可; (2)根据表格数据,顶点数与面数的和减去棱数等于2进行解答. 【解答】解:(1)填表如下: 名称 三棱锥 三棱柱 正方体 正八面体 图形 顶点数V 4 6 8 6 棱数E 6 9 12 12 面数F 4 5 6 8 (2)∵4+4﹣6=2, 6+5﹣9=2, 8+6﹣12=2, 6+8﹣12=2, …, ∴V+F﹣E=2. 即V、E、F之间的关系式为:V+F﹣E=2. 故答案为:6,9,12,6,V+F﹣E=2. 【点评】本题是对欧拉公式的考查,观察图形准确数出各图形的顶点数、面数、棱数是解题的关键. 21.【分析】(1)由频数分布直方图可得a=8,由频数之和为50求出b的值; (2)根据中位数的意义,找出第25、26位的两个数落在哪个范围即可; (3)求出b的值,就可以补全频数分布直方图; (4)样本估计总体,样本中立定跳远成绩在2.4≤x<2.8范围内的占,因此估计总体1200人的是立定跳远成绩在2.4≤x<2.8范围内的人数. 【解答】解:(1)由统计图得,a=8,b=50﹣8﹣12﹣10=20, 故答案为:8,20; (2)由中位数的意义可得,50个数据从小到大排列处在中间位置的两个数在2.0≤x<2.4组内, 故答案为:2.0≤x<2.4; (3)补全频数分布直方图如图所示: (4)1200×=240(人), 答:该校1200名学生中立定跳远成绩在2.4≤x<2.8范围内的有240人. 【点评】本题考查频数分布表、频数分布直方图的意义和制作方法,理解各个数量之间的关系是正确解答的关键. 22.【分析】(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2,4),进而求解; (2)S△AOB=S△AOC﹣S△BOC=OC•AMOC•BN,即可求解. 【解答】解:(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2,4), 将点A的坐标代入反比例函数表达式得:4=,解得:k=﹣8, 故反比例函数表达式为:y=﹣②; (2)联立①②并解得:x=﹣2或﹣8, 当x=﹣8时,y=x+5=1,故点B(﹣8,1), 设y=x+5交x轴于点C, 令y=0,则x+5=0, ∴x=﹣10, ∴C(﹣10,0), 过点A、B分别作x轴的垂线交x轴于点M、N, 则S△AOB=S△AOC﹣S△BOC=OC•AMOC•BN=. 【点评】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强. 23.【分析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°,于是得到结论; (2)过C作CH⊥BF于H,根据勾股定理得到BF===2,根据相似三角形的性质得到CH=,根据三角函数的定义即可得到结论. 【解答】(1)证明:连接AE, ∵AB是⊙O的直径, ∴∠AEB=90°, ∴∠1+∠2=90°. ∵AB=AC, ∴2∠1=∠CAB. ∵∠BAC=2∠CBF, ∴∠1=∠CBF ∴∠CBF+∠2=90° 即∠ABF=90° ∵AB是⊙O的直径, ∴直线BF是⊙O的切线; (2)解:过C作CH⊥BF于H, ∵AB=AC,⊙O的直径为4, ∴AC=4, ∵CF=6,∠ABF=90°, ∴BF===2, ∵∠CHF=∠ABF,∠F=∠F, ∴△CHF∽△ABF, ∴=, ∴=, ∴CH=, ∴HF===, ∴BH=BF﹣HF=2﹣=, ∴tan∠CBF===. 【点评】本题考查了切线的判定与性质、勾股定理、直径所对的圆周角是直角、相似三角形的判定和性质、解直角三角形等知识点、正确的作出辅助线是解题的关键. 24.【分析】(1)根据等腰直角三角形的性质得到∠ACD=∠BCD=45°,证明△DCF≌△DCE,根据全等三角形的对应边相等证明结论; (2)证明△FCD∽△DCE,根据相似三角形的性质列出比例式,整理即可证明结论; (3)作DG⊥BC,根据等腰直角三角形的性质求出DG,由(2)的结论求出CE,证明△ENC∽△DNG,根据相似三角形的性质求出NG,根据勾股定理计算,得到答案. 【解答】(1)证明:∵∠ACB=90°,AC=BC,CD是中线, ∴∠ACD=∠BCD=45°,∠ACF=∠BCE=90°, ∴∠DCF=∠DCE=135°, 在△DCF和△DCE中, , ∴△DCF≌△DCE(SAS) ∴DE=DF; (2)证明:∵∠DCF=135°, ∴∠F+∠CDF=45°, ∵∠FDE=45°, ∴∠CDE+∠CDF=45°, ∴∠F=∠CDE, ∵∠DCF=∠DCE,∠F=∠CDE, ∴△FCD∽△DCE, ∴=, ∴CD2=CE•CF; (3)解:过点D作DG⊥BC于G, ∵∠DCB=45°, ∴GC=GD=CD=, 由(2)可知,CD2=CE•CF, ∴CE==2, ∵∠ECN=∠DGN,∠ENC=∠DNG, ∴△ENC∽△DNG, ∴=,即=, 解得,NG=, 由勾股定理得,DN==. 【点评】本题考查的是相似三角形的判定和性质、全等三角形的判定和性质、等腰直角三角形的性质,掌握相似三角形的判定定理和性质定理是解题的关键. 25.【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解; (2)PN=PQsin45°=(﹣m2+m)=﹣(m﹣2)2+,即可求解; (3)分AC=CQ、AC=AQ、CQ=AQ三种情况,分别求解即可. 【解答】解:(1)将点A、B的坐标代入抛物线表达式得,解得, 故抛物线的表达式为:y=﹣x2+x+4; (2)由抛物线的表达式知,点C(0,4), 由点B、C的坐标得,直线BC的表达式为:y=﹣x+4; 设点M(m,0),则点P(m,﹣m2+m+4),点Q(m,﹣m+4), ∴PQ=﹣m2+m+4+m﹣4=﹣m2+m, ∵OB=OC,故∠ABC=∠OCB=45°, ∴∠PQN=∠BQM=45°, ∴PN=PQsin45°=(﹣m2+m)=﹣(m﹣2)2+, ∵﹣<0,故当m=2时,PN有最大值为; (3)存在,理由: 点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5, ①当AC=CQ时,过点Q作QE⊥y轴于点E, 则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25, 解得:m=±(舍去负值), 故点Q(,); ②当AC=AQ时,则AQ=AC=5, 在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0), 故点Q(1,3); ③当CQ=AQ时,则2m2=[m﹣(﹣3)]2+(﹣m+4)2,解得:m=(舍去); 综上,点Q的坐标为(1,3)或(,). 【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、解直角三角形、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏. 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2020/8/12 15:47:57;用户:18366185883;邮箱:18366185883;学号:22597006 第21页(共21页)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 山东省 枣庄市 中考 数学试卷
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文