2016年江苏省南通市中考数学试卷(含解析版).doc
《2016年江苏省南通市中考数学试卷(含解析版).doc》由会员分享,可在线阅读,更多相关《2016年江苏省南通市中考数学试卷(含解析版).doc(23页珍藏版)》请在咨信网上搜索。
2016年江苏省南通市中考数学试卷 一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)(2016•南通)2的相反数是( ) A.﹣2 B.﹣ C.2 D. 2.(3分)(2016•南通)太阳半径约为696000km,将696000用科学记数法表示为( ) A.696×103 B.69.6×104 C.6.96×105 D.0.696×106 3.(3分)(2016•南通)计算的结果是( ) A. B. C. D. 4.(3分)(2016•南通)下列几何图形: 其中是轴对称图形但不是中心对称图形的共有( ) A.4个 B.3个 C.2个 D.1个 5.(3分)(2016•南通)若一个多边形的内角和与它的外角和相等,则这个多边形是( ) A.三角形 B.四边形 C.五边形 D.六边形 6.(3分)(2016•南通)函数y=中,自变量x的取值范围是( ) A.x且x≠1 B.x且x≠1 C.x且x≠1 D.x且x≠1 7.(3分)(2016•南通)如图,为了测量某建筑物MN的高度,在平地上A处测得建筑物顶端M的仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端M的仰角为45°,则建筑物MN的高度等于( ) A.8()m B.8()m C.16()m D.16()m 8.(3分)(2016•南通)如图所示的扇形纸片半径为5cm,用它围成一个圆锥的侧面,该圆锥的高是4cm,则该圆锥的底面周长是( ) A.3πcm B.4πcm C.5πcm D.6πcm 9.(3分)(2016•南通)如图,已知点A(0,1),点B在x轴正半轴上的一动点,以AB为边作等腰直角三角形ABC,使点C在第一象限,∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,则表示y与x的函数关系的图象大致是( ) A. B. C. D. 10.(3分)(2016•南通)平面直角坐标系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三点,D(1,m)是一个动点,当△ACD的周长最小时,△ABD的面积为( ) A. B. C. D. 二、填空题(本大题共8小题,每小题3分,共24分) 11.(3分)(2016•南通)计算:x3•x2=______. 12.(3分)(2016•南通)已知:如图直线AB与CD相交于点O,OE⊥AB,∠COE=60°,则∠BOD等于______度. 13.(3分)(2016•南通)某几何体的三视图如图所示,则这个几何体的名称是______. 14.(3分)(2016•南通)如图Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则cosA=______. 15.(3分)(2016•南通)已知一组数据5,10,15,x,9的平均数是8,那么这组数据的中位数是______. 16.(3分)(2016•南通)设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)=______. 17.(3分)(2016•南通)如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1cm,则BF=______cm. 18.(3分)(2016•南通)平面直角坐标系xOy中,已知点(a,b)在直线y=2mx+m2+2(m>0)上,且满足a2+b2﹣2(1+2bm)+4m2+b=0,则m=______. 三、解答题(本大题共10小题,共96分) 19.(10分)(2016•南通)(1)计算:|﹣2|+(﹣1)2+(﹣5)0﹣; (2)解方程组:. 20.(8分)(2016•南通)解不等式组,并写出它的所有整数解. 21.(9分)(2016•南通)某水果批发市场新进一批水果,有苹果、西瓜、桃子和香蕉四个品种,统计后将结果绘制成条形图(如图),已知西瓜的重量占这批水果总重量的40%. 回答下列问题: (1)这批水果总重量为______kg; (2)请将条形图补充完整; (3)若用扇形图表示统计结果,则桃子所对应扇形的圆心角为______度. 22.(7分)(2016•南通)不透明袋子里装有红色、绿色小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,求两次都摸到红色小球的概率. 23.(8分)(2016•南通)列方程解应用题: 某列车平均提速60km/h,用相同的时间,该列车提速前行驶200km,提速后比提速前多行驶100km,求提速前该列车的平均速度. 24.(9分)(2016•南通)已知:如图,AM为⊙O的切线,A为切点,过⊙O上一点B作BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB. (1)求∠AOB的度数; (2)当⊙O的半径为2cm,求CD的长. 25.(8分)(2016•南通)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F. (1)求证:△BEF≌△CDF; (2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形. 26.(10分)(2016•南通)平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过(﹣1,m2+2m+1)、(0,m2+2m+2)两点,其中m为常数. (1)求b的值,并用含m的代数式表示c; (2)若抛物线y=x2+bx+c与x轴有公共点,求m的值; (3)设(a,y1)、(a+2,y2)是抛物线y=x2+bx+c上的两点,请比较y2﹣y1与0的大小,并说明理由. 27.(13分)(2016•南通)如图,△ABC中,∠ACB=90°,AC=5,BC=12,CO⊥AB于点O,D是线段OB上一点,DE=2,ED∥AC(∠ADE<90°),连接BE、CD.设BE、CD的中点分别为P、Q. (1)求AO的长; (2)求PQ的长; (3)设PQ与AB的交点为M,请直接写出|PM﹣MQ|的值. 28.(14分)(2016•南通)如图,平面直角坐标系xOy中,点C(3,0),函数y=(k>0,x>0)的图象经过▱OABC的顶点A(m,n)和边BC的中点D. (1)求m的值; (2)若△OAD的面积等于6,求k的值; (3)若P为函数y═(k>0,x>0)的图象上一个动点,过点P作直线l⊥x轴于点M,直线l与x轴上方的▱OABC的一边交于点N,设点P的横坐标为t,当时,求t的值. 2016年江苏省南通市中考数学试卷 参考答案与试题解析 一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)(2016•南通)2的相反数是( ) A.﹣2 B.﹣ C.2 D. 【解答】解:2的相反数是﹣2. 故选:A. 2.(3分)(2016•南通)太阳半径约为696000km,将696000用科学记数法表示为( ) A.696×103 B.69.6×104 C.6.96×105 D.0.696×106 【解答】解:将696000用科学记数法表示为:6.96×105. 故选:C. 3.(3分)(2016•南通)计算的结果是( ) A. B. C. D. 【解答】解:原式==, 故选D. 4.(3分)(2016•南通)下列几何图形: 其中是轴对称图形但不是中心对称图形的共有( ) A.4个 B.3个 C.2个 D.1个 【解答】解:正方形和圆既是中心对称图形,也是轴对称图形; 等边三角形是轴对称图形,不是中心对称图形; 正五边形是轴对称图形,不是中心对称图形. 故选C. 5.(3分)(2016•南通)若一个多边形的内角和与它的外角和相等,则这个多边形是( ) A.三角形 B.四边形 C.五边形 D.六边形 【解答】解:设多边形的边数为n,根据题意得 (n﹣2)•180°=360°, 解得n=4. 故这个多边形是四边形. 故选B. 6.(3分)(2016•南通)函数y=中,自变量x的取值范围是( ) A.x且x≠1 B.x且x≠1 C.x且x≠1 D.x且x≠1 【解答】解:2x﹣1≥0且x﹣1≠0, 解得x≥且x≠1, 故选B. 7.(3分)(2016•南通)如图,为了测量某建筑物MN的高度,在平地上A处测得建筑物顶端M的仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端M的仰角为45°,则建筑物MN的高度等于( ) A.8()m B.8()m C.16()m D.16()m 【解答】解:设MN=xm, 在Rt△BMN中,∵∠MBN=45°, ∴BN=MN=x, 在Rt△AMN中,tan∠MAN=, ∴tan30°==, 解得:x=8(+1), 则建筑物MN的高度等于8(+1)m; 故选A. 8.(3分)(2016•南通)如图所示的扇形纸片半径为5cm,用它围成一个圆锥的侧面,该圆锥的高是4cm,则该圆锥的底面周长是( ) A.3πcm B.4πcm C.5πcm D.6πcm 【解答】解:∵扇形纸片半径为5cm,用它围成一个圆锥的侧面,该圆锥的高是4cm, ∴圆锥的底面半径为:=3(cm), ∴该圆锥的底面周长是:2π×3=6π(cm). 故选:D. 9.(3分)(2016•南通)如图,已知点A(0,1),点B在x轴正半轴上的一动点,以AB为边作等腰直角三角形ABC,使点C在第一象限,∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,则表示y与x的函数关系的图象大致是( ) A. B. C. D. 【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示, 由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y, ∵AD∥x轴, ∴∠DAO+∠AOD=180°, ∴∠DAO=90°, ∴∠OAB+∠BAD=∠BAD+∠DAC=90°, ∴∠OAB=∠DAC, 在△OAB和△DAC中, , ∴△OAB≌△DAC(AAS), ∴OB=CD, ∴CD=x, ∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1, ∴y=x+1(x>0). 故选:A. 10.(3分)(2016•南通)平面直角坐标系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三点,D(1,m)是一个动点,当△ACD的周长最小时,△ABD的面积为( ) A. B. C. D. 【解答】解:由题可得,点C关于直线x=1的对称点E的坐标为(2,﹣1), 设直线AE的解析式为y=kx+b,则 , 解得, ∴y=﹣x﹣, 将D(1,m)代入,得 m=﹣﹣=﹣, 即点D的坐标为(1,﹣), ∴当△ACD的周长最小时,△ABD的面积=×AB×|﹣|=×4×=. 故选(C) 二、填空题(本大题共8小题,每小题3分,共24分) 11.(3分)(2016•南通)计算:x3•x2= x5 . 【解答】解:原式=x5. 故答案是:x5. 12.(3分)(2016•南通)已知:如图直线AB与CD相交于点O,OE⊥AB,∠COE=60°,则∠BOD等于 30 度. 【解答】解:由垂线的定义,得 ∠AOE=90°, 由余角的性质,得 ∠AOC=∠AOE﹣∠COE=30°, 由对顶角相等,得 ∠BOD=∠AOC=30°, 故答案为:30. 13.(3分)(2016•南通)某几何体的三视图如图所示,则这个几何体的名称是 圆柱 . 【解答】解:根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱, 故答案为:圆柱. 14.(3分)(2016•南通)如图Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则cosA= . 【解答】解:∵直角△ABC中,CD是斜边AB上的中线, ∴AB=2CD=2×2=4, 则cosA==. 故答案是:. 15.(3分)(2016•南通)已知一组数据5,10,15,x,9的平均数是8,那么这组数据的中位数是 9 . 【解答】解:根据平均数的定义可知,(5+10+15+x+9)÷5=8, 解得:x=1, 把这组数据从小到大的顺序排列为1,5,9,10,15,处于中间位置的那个数是9, 那么由中位数的定义可知,这组数据的中位数是9; 故答案为:9. 16.(3分)(2016•南通)设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)= 3 . 【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2, ∴x12﹣3x1﹣1=0,x22﹣3x2﹣1=0,x1+x2=3, ∴x22﹣3x2=1, ∴x1+x2(x22﹣3x2)=x1+x2=3, 故答案为3. 17.(3分)(2016•南通)如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1cm,则BF= 2+ cm. 【解答】解:过点E作EM⊥BD于点M,如图所示. ∵四边形ABCD为正方形, ∴∠BAC=45°,∠BCD=90°, ∴△DEM为等腰直角三角形. ∵BE平分∠DBC,EM⊥BD, ∴EM=EC=1cm, ∴DE=EM=cm. 由旋转的性质可知:CF=CE=1cm, ∴BF=BC+CF=CE+DE+CF=1++1=2+cm. 故答案为:2+. 18.(3分)(2016•南通)平面直角坐标系xOy中,已知点(a,b)在直线y=2mx+m2+2(m>0)上,且满足a2+b2﹣2(1+2bm)+4m2+b=0,则m= ﹣1+ . 【解答】解:∵点(a,b)在直线y=2mx+m2+2(m>0)上, ∴b=2ma+m2+2代入a2+b2﹣2(1+2bm)+4m2+b=0, 整理得到(b﹣2m)2+(a+m)2=0, ∵(b﹣2m)2≥0,(a+m)2≥0, ∴a=﹣m,b=2m代入b=2ma+m2+2得到, 2m=﹣2m2+m2+2, ∴m2+2m﹣2=0, ∴m=﹣1, ∵m>0, ∴m=﹣1+, 故答案为﹣1+ 三、解答题(本大题共10小题,共96分) 19.(10分)(2016•南通)(1)计算:|﹣2|+(﹣1)2+(﹣5)0﹣; (2)解方程组:. 【解答】解(1)原式=2+1+1﹣2=2, (2)①+②得,4x=4, ∴x=1, 把x=1代入①得,1+2y=9, ∴y=4, ∴原方程组的解为. 20.(8分)(2016•南通)解不等式组,并写出它的所有整数解. 【解答】解: 由①,得x<2, 由②,得x>﹣4, 故原不等式组的解集是﹣4<x<2, ∴这个不等式组的所有整数解是x=﹣3或x=﹣2或x=﹣1或x=0或x=1. 21.(9分)(2016•南通)某水果批发市场新进一批水果,有苹果、西瓜、桃子和香蕉四个品种,统计后将结果绘制成条形图(如图),已知西瓜的重量占这批水果总重量的40%. 回答下列问题: (1)这批水果总重量为 4000 kg; (2)请将条形图补充完整; (3)若用扇形图表示统计结果,则桃子所对应扇形的圆心角为 90 度. 【解答】解:(1)设这批水果总重量为mkg, 应用m•40%=1600, 解得m=4000kg, 故答案为4000. (2)∵苹果的重量=总重量﹣西瓜的重量﹣桃子的重量﹣香蕉西瓜的重量=4000﹣1600﹣1000﹣200=1200, 条形图如图所示, (3)∵桃子的重量占这批水果总重量的==25%, ∴桃子所对应扇形的圆心角为360°×25%=90°, 故答案为90. 22.(7分)(2016•南通)不透明袋子里装有红色、绿色小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,求两次都摸到红色小球的概率. 【解答】解:画树状图得: ∵共有4种等可能的结果,两次都摸到红球的只有1种情况, ∴两次都摸到红球的概率是. 23.(8分)(2016•南通)列方程解应用题: 某列车平均提速60km/h,用相同的时间,该列车提速前行驶200km,提速后比提速前多行驶100km,求提速前该列车的平均速度. 【解答】解:设提速前列车的平均速度为xkm/h, 由题意得,=, 解得:x=120, 经检验,x=120是原分式方程的解,且符合题意. 答:提速前列车的平均速度为120km/h. 24.(9分)(2016•南通)已知:如图,AM为⊙O的切线,A为切点,过⊙O上一点B作BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB. (1)求∠AOB的度数; (2)当⊙O的半径为2cm,求CD的长. 【解答】解:(1)∵AM为圆O的切线, ∴OA⊥AM, ∵BD⊥AM, ∴∠OAD=∠BDM=90°, ∴OA∥BD, ∴∠AOC=∠OCB, ∵OB=OC, ∴∠OBC=∠OCB, ∵OC平分∠AOB, ∴∠AOC=∠BOC, ∴∠BOC=∠OCB=∠OBC=60°, ∴∠AOB=120°; (2)过点O作OE⊥BD于点E, ∵∠BOC=∠OCB=∠OBC=60°, ∴△OBC是等边三角形, ∴BE=EC=1, ∵∠OED=∠EDA=∠OAD=90°, ∴四边形OADE是矩形, ∴DE=OA=2, ∴EC=DC=1. 25.(8分)(2016•南通)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F. (1)求证:△BEF≌△CDF; (2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形. 【解答】(1)证明:∵四边形ABCD是平行四边形, ∵AB=CD,AB∥CD. ∵BE=AB, ∴BE=CD. ∵AB∥CD, ∴∠BEF=∠CDF,∠EBF=∠DCF, 在△BEF与△CDF中, ∵, ∴△BEF≌△CDF(ASA); (2)证明:∵四边形ABCD是平行四边形, ∴AB∥CD,AB=CD,∠A=∠DCB, ∵AB=BE, ∴CD=EB, ∴四边形BECD是平行四边形, ∴BF=CF,EF=DF, ∵∠BFD=2∠A, ∴∠BFD=2∠DCF, ∴∠DCF=∠FDC, ∴DF=CF, ∴DE=BC, ∴四边形BECD是矩形. 26.(10分)(2016•南通)平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过(﹣1,m2+2m+1)、(0,m2+2m+2)两点,其中m为常数. (1)求b的值,并用含m的代数式表示c; (2)若抛物线y=x2+bx+c与x轴有公共点,求m的值; (3)设(a,y1)、(a+2,y2)是抛物线y=x2+bx+c上的两点,请比较y2﹣y1与0的大小,并说明理由. 【解答】解:(1)∵抛物线y=x2+bx+c经过(﹣1,m2+2m+1)、(0,m2+2m+2)两点, ∴, ∴, 即:b=2,c=m2+2m+2, (2)由(1)得y=x2+2x+m2+2m+2, 令y=0,得x2+2x+m2+2m+2=0, ∵抛物线与x轴有公共点, ∴△=4﹣4(m2+2m+2)≥0, ∴(m+1)2≤0, ∵(m+1)2≥0, ∴m+1=0, ∴m=﹣1; (3)由(1)得,y=x2+2x+m2+2m+2, ∵(a,y1)、(a+2,y2)是抛物线的图象上的两点, ∴y1=a2+2a+m2+2m+2,y2=(a+2)2+2(a+2)+m2+2m+2, ∴y2﹣y1=[(a+2)2+2(a+2)+m2+2m+2]﹣[a2+2a+m2+2m+2] =4(a+2) 当a+2≥0,即a≥﹣2时,y2﹣y1≥0, 当a+2<0,即a<﹣2时,y2﹣y1<0. 27.(13分)(2016•南通)如图,△ABC中,∠ACB=90°,AC=5,BC=12,CO⊥AB于点O,D是线段OB上一点,DE=2,ED∥AC(∠ADE<90°),连接BE、CD.设BE、CD的中点分别为P、Q. (1)求AO的长; (2)求PQ的长; (3)设PQ与AB的交点为M,请直接写出|PM﹣MQ|的值. 【解答】解:(1)如图1中, ∵CO⊥AB, ∴∠AOC=∠ACB=90°,∵∠A=∠A, ∴△ABC∽△ACO, ∴=, ∵AB===13, ∴OA==. (2)如图2中,取BD中点F,CD中点Q,连接PF、QF, 则PF∥ED,FQ∥BC,PF⊥FQ,且PF=ED=1,FQ=BC=6, 在Rt△PFQ中,PQ===. (3)如图3中,取AD中点G,连接GQ, ∵GQ∥AC,ED∥AC,PF∥ED, ∴PF∥GQ, ∴△PMF∽△QMG, ∴==, ∵PM+QM=, ∴PM=,MQ=, ∴|PM﹣QM|=. 28.(14分)(2016•南通)如图,平面直角坐标系xOy中,点C(3,0),函数y=(k>0,x>0)的图象经过▱OABC的顶点A(m,n)和边BC的中点D. (1)求m的值; (2)若△OAD的面积等于6,求k的值; (3)若P为函数y═(k>0,x>0)的图象上一个动点,过点P作直线l⊥x轴于点M,直线l与x轴上方的▱OABC的一边交于点N,设点P的横坐标为t,当时,求t的值. 【解答】解:(1)∵点C(3,0),▱OABC的顶点A(m,n), ∴B(m+3,n), ∴D(+3,n), ∵函数y=(k>0,x>0)的图象经过▱OABC的顶点A(m,n)和边BC的中点D, ∴mn=k,, ∴m=2, (2)∵点D是平行四边形BC中点, ∴S平行四边形OABC=2S△OAD=12, ∵S平行四边形OABC=3×n=12, ∴n=4, 由(1)知,m=2, ∴k=mn=8, (3)①如图1,点N在OA上, 由(1)知,m=2, ∴A(2,n). 即0<t<2 直线OA的解析式为y=x, 设点P的横坐标为t, ∴P(t,), ∵过点P作直线l⊥x轴于点M. ∴N(t,t),M(t,0), ∴PN=﹣t,PM=, ∵, ∴=4(﹣t), ∴t=或t=﹣(舍), ②如图2, 当点N在AB上时, 由(1)知,B(5,n), ∴2≤t≤5 由题意知,P(t,).N(t,n),M(t,0), ∵, ∴4(n﹣)=, ∴t=, ③如图3,4, 当点N在BC上时,(3<t≤5) ∵B(5,n),C(3,0), ∴直线BC解析式为y=x﹣, ∴P(t,),N(t,t﹣),M(t,0), ∵, ∴4|t﹣﹣|=, ∴t=或t=(舍)或t=或t=(舍) ∴t的值为,,或. 参与本试卷答题和审题的老师有:梁宝华;sd2011;张其铎;733599;sdwdmahongye;tcm123;gbl210;szl;zhjh;2300680618;HLing;lantin;弯弯的小河;曹先生;星月相随;zgm666;dbz1018;ZJX(排名不分先后) 菁优网 2016年9月23日 第23页(共23页)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 江苏省 南通市 中考 数学试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文