湖南省邵阳市2020年中考数学试题(解析版).doc
《湖南省邵阳市2020年中考数学试题(解析版).doc》由会员分享,可在线阅读,更多相关《湖南省邵阳市2020年中考数学试题(解析版).doc(25页珍藏版)》请在咨信网上搜索。
湖南省邵阳市2020年中考数学试题 一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2020的倒数是( ) A. B. C. D. 【答案】C 【解析】 【分析】 根据倒数的定义解答. 【详解】2020的倒数是, 故选:C. 【点睛】此题考查倒数的定义,熟记倒数的定义是解题的关键. 2.下列四个立体图形中,它们各自的三视图都相同的是( ) A. B. C. D. 【答案】A 【解析】 【分析】 根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答即可. 【详解】A、球的三视图都是圆,故本选项正确; B、圆锥的主视图和左视图是三角形,俯视图是带有圆心的圆,故本选项错误; C、圆柱的主视图和左视图是矩形,俯视图是圆,故本选项错误; D、三棱柱的主视图和左视图是矩形,俯视图是三角形,故本选项错误. 故选A. 【点睛】本题考查的是几何体的三视图,理解主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形是解题的关键. 3.2020年6月23日,中国第55颗北斗号航卫星成功发射,标志着拥有全部知识产权的北斗导航系统全面建成.据统计:2019年,我国北斗卫星导航与位置服务产业总体产值达3450亿元,较2018年增长14.4%.其中,3450亿元用科学记数法表示为( ) A. 元 B. 元 C. 元 D. 元 【答案】D 【解析】 【分析】 根据科学计数法的表示形式为,其中,n为整数,即可做出选择. 【详解】解:根据科学计数法的表示形式为,其中,n为整数,则3450亿=345000000000=3.45×1011元. 故选:D 【点睛】本题主要考查利用科学计数法表示较大的数的方法,掌握科学计数法的表示方法是解答本题的关键,这里还需要注意n的取值. 4.设方程的两根分别是,则的值为( ) A. 3 B. C. D. 【答案】A 【解析】 【分析】 本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可. 【详解】由可知,其二次项系数,一次项系数, 由韦达定理:, 故选:A. 【点睛】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率. 5.已知正比例函数的图象过点,把正比例函数的图象平移,使它过点,则平移后的函数图象大致是( ) A. B. C. D. 【答案】D 【解析】 【分析】 先求出正比例函数解析式,再根据平移和经过点求出一次函数解析式,即可求解. 【详解】解:把点代入得 解得, ∴正比例函数解析式为, 设正比例函数平移后函数解析式为, 把点代入得, ∴, ∴平移后函数解析式为, 故函数图象大致. 故选:D 【点睛】本题考查了求正比例函数,一次函数解析式,一次函数图象与性质,根据正比例函数求出平移后一次函数解析式是解题关键. 6.下列计算正确的是( ) A. B. C. D. 【答案】D 【解析】 【分析】 分别运用二次根式、整式的运算、分式的运算法则逐项排除即可. 【详解】解:A. ,故A选项错误; B. ,故B选项错误; C. ,故C选项错误; D. ,故D选项正确. 故答案为D. 【点睛】本题考查了二次根式、整式的运算、分式的运算,掌握相关运算法则是解答本题的关键. 7.如图,四边形是平行四边形,点E,B,D,F在同一条直线上,请添加一个条件使得,下列不正确的是( ) A. B. C. D. 【答案】A 【解析】 【分析】 根据平行四边形的性质结合全等三角形的判定,逐项进行判断即可. 【详解】解:∵四边形ABCD是平行四边形, ∴AB=CD,AB∥CD, ∴∠ABD=∠BDC, ∵∠ABE+∠ABD=∠BDC+∠CDF, ∴∠ABE=∠CDF, A.若添加,则无法证明,故A错误; B.若添加,运用AAS可以证明,故选项B正确; C.若添加,运用ASA可以证明,故选项C正确; D.若添加,运用SAS可以证明,故选项D正确. 故选:A. 【点睛】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型. 8.已知,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是( ) A. B. C. D. 【答案】B 【解析】 【分析】 根据,得出,判断选项中的点所在的象限,即可得出答案. 【详解】∵ ∴ 选项A:在第一象限 选项B:在第二象限 选项C:在第三象限 选项D:在第四象限 小手盖住的点位于第二象限 故选:B 【点睛】本题考查了点的象限的判断,熟练进行正负的判断是解题的关键. 9.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为,宽为的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为( ) A. B. C. D. 【答案】B 【解析】 【分析】 本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解. 【详解】假设不规则图案面积为x, 由已知得:长方形面积为20, 根据几何概率公式小球落在不规则图案的概率为: , 当事件A实验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35, 综上有:,解得. 故选:B. 【点睛】本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高. 10.将一张矩形纸片按如图所示操作: (1)将沿向内折叠,使点A落在点处, (2)将沿向内继续折叠,使点P落在点处,折痕与边交于点M. 若,则的大小是( ) A. 135° B. 120° C. 112.5° D. 115° 【答案】C 【解析】 【分析】 由折叠前后对应角相等且可先求出,进一步求出,再由折叠可求出,最后在中由三角形内角和定理即可求解. 【详解】解:∵折叠,且, ∴,即, ∵折叠, ∴, ∴在中,, 故选:C. 【点睛】本题借助矩形的性质考查了折叠问题、三角形内角和定理等,记牢折叠问题的特点:折叠前后对应边相等,对应角相等即可解题. 二、填空题(本大题有8个小题,每小题3分,共24分) 11.因式分解:=______. 【答案】2(x+3)(x﹣3). 【解析】 试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x2-9)=2(x+3)(x-3). 考点:因式分解. 12.如图,已知点A在反比例函数的图象上,过点A作轴于点B,的面积是2.则k的值是_________. 【答案】4 【解析】 【分析】 根据△OAB的面积等于2即可得到线段OB与线段AB的乘积,进而得到A点横坐标与纵坐标的乘积,进而求出k值. 【详解】解:设点A的坐标为(),, 由题意可知:, ∴, 又点A在反比例函数图像上, 故有. 故答案为:. 【点睛】本题考查了反比例函数系数k的几何意义,三角形的面积公式等,熟练掌握反比例函数的图形和性质是解决此类题的关键. 13.据统计:2019年,邵阳市在教育扶贫方面,共资助学生91.3万人次,全市没有一名学生因贫失学,其中,某校老师承担了对甲,乙两名学生每周“送教上门”的任务,以下是甲、乙两名学生某十周每周接受“送教上门”的时间(单位:小时): 甲:7,8,8,9,7,8,8,9,7,9; 乙:6,8,7,7,8,9,10,7,9,9. 从接受“送教上门”的时间波动大小来看,___________学生每周接受送教的时间更稳定.(填“甲”或“乙”) 【答案】甲 【解析】 【分析】 先算出甲、乙送教上门时间的平均数,进而求出方差,方差越小,则接受送教的时间更稳定. 【详解】解:甲的“送教上门”时间的平均数为: , 乙的“送教上门”时间的平均数为:, 甲的方差:, 乙的方差:, , 所以甲的方差小,故甲学生每周接受送教的时间更稳定. 故答案为:甲. 【点睛】本题主要考查方差,熟练掌握方差的意义:方差越小,数据的密集度越高,波动幅度越小是解题的关键. 14.如图,线段,用尺规作图法按如下步骤作图. (1)过点B作的垂线,并在垂线上取; (2)连接,以点C为圆心,为半径画弧,交于点E; (3)以点A为圆心,为半径画弧,交于点D.即点D为线段的黄金分割点. 则线段的长度约为___________(结果保留两位小数,参考数据:) 【答案】6.18 【解析】 【分析】 根据作图得△ABC为直角三角形,,AE=AD, 根据勾股定理求出AC,再求出AE,即可求出AD. 【详解】解:由作图得△ABC为直角三角形,,AE=AD, ∴cm, ∴cm, ∴cm. 故答案为:6.18 【点睛】本题考查了尺规作图,勾股定理等知识,根据作图步骤得到相关已知条件是解题关键. 15.在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为________. 2 1 6 3 【答案】 【解析】 【分析】 先将表格中最上一行的3个数相乘得到,然后中间一行的三个数相乘以及最后一行的三个数相等都是,即可求解. 【详解】解:由题意可知,第一行三个数的乘积为:, 设第二行中间数为x,则,解得, 设第三行第一个数为y,则,解得, ∴2个空格的实数之积为. 故答案为:. 【点睛】本题考查了二次根数的乘法运算法则,熟练掌握二次根式的加减乘除运算法则是解决此类题的关键. 16.中国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则依题意列方程为____________. 【答案】x(x+12)=864 【解析】 【分析】 本题理清题意后,可利用矩形面积公式,根据假设未知数表示长与宽,按要求列方程即可. 【详解】因为宽为x,且宽比长少12,所以长为x+12, 故根据矩形面积公式列方程:x(x+12)=864, 故答案:x(x+12)=864. 【点睛】本题考查一元二次方程的实际应用,此类型题目去除复杂题目背景后,按照常规公式,假设未知数,列方程求解即可. 17.如图①是山东舰航徽的构图,采用航母45度破浪而出的角度,展现山东舰作为中国首艘国产舰母橫空出世的气势,将舰徽中第一条波浪抽象成几何图形,则是一条长为的弧,若该弧所在的扇形是高为12的圆锥侧面展开图(如图②),则该圆锥的母线长为____________. 【答案】13. 【解析】 【分析】 由扇形弧长求出底面半径,由勾股定理即可求出母线AB的长. 【详解】解:∵圆锥底面周长=侧面展开后扇形的弧长= ∴OB=, Rt△AOB中,AB=, 所以,该圆锥的母线长为13. 故答案为:13. 【点睛】本题考查圆锥弧长公式的应用,解题的关键是牢记有关的公式. 18.如图,在中,,斜边,过点C作,以为边作菱形,若,则的面积为________. 【答案】 【解析】 【分析】 如下图,先利用直角三角形中30°角的性质求出HE的长度,然后利用平行线间的距离处处相等,可得CG的长度,即可求出直角三角形ABC面积. 【详解】 如图,分别过点E、C作EH、CG垂直AB,垂足为点H、G, ∵根据题意四边形ABEF为菱形, ∴AB=BE=, 又∵∠ABE=30° ∴在RT△BHE中,EH=, 根据题意,AB∥CF, 根据平行线间的距离处处相等, ∴HE=CG=, ∴的面积为. 【点睛】本题的辅助线是解答本题的关键,通过辅助线,利用直角三角形中的30°角所对直角边是斜边一半的性质,求出HE,再利用平行线间的距离处处相等这一知识点得到HE=CG,最终求出直角三角形面积. 三、解答题(本大题有8个小题,第19~25题每题8分,第26是10分,共66分.解答应写出必要的文字说明,演算步骤或证明过程) 19.计算:. 【答案】2 【解析】 【分析】 分别利用零指数幂、负指数幂的性质,绝对值的性质和特殊角的三角函数值分别化简即可. 【详解】解:原式= = =2 【点睛】此题主要考查了根式运算,指数计算,绝对值,三角函数值等知识点,正确应用记住它们的化简规则是解题关键. 20.已知:, (1)求m,n的值; (2)先化简,再求值:. 【答案】(1);(2),0 【解析】 【分析】 (1)分别根据绝对值的非负数、二次根式的非负数列出m、n的方程,解之即可求出m、n的值; (2)先利用整式的运算法则化简,再代入m、n值计算即可求解. 【详解】(1)根据非负数得:m-1=0且n+2=0, 解得:, (2)原式==, 当,原式=. 【点睛】本题考查了绝对值与二次根式的非负性、整式的化简求值,还涉及去括号法则、完全平方公式、合并同类项法则等知识,熟练掌握非负数的性质以及运算法则是解答的关键. 21.如图,在等腰中,,点D是上一点,以为直径的过点A,连接,. (1)求证:是的切线; (2)若,求的半径. 【答案】(1)证明见解析;(2)试题错误. 【解析】 【分析】 (1)连接OA,由圆的性质可得OA=OB,即∠OBA=∠OAB;再由AB=AC,即∠OBA=∠C,再结合,可得∠OAB=∠CAD,然后由∠BAD=90°说明∠OAC=90°即可完成证明; (2)试题错误. 【详解】(1)证明:如图:连接OA ∵OA=OB ∴∠OBA=∠OAB ∵AB=AC ∴∠OBA=∠C ∴∠OAB=∠C ∵ ∴∠OAB=∠CAD ∵BD是直径 ∴∠BAD=90° ∵∠OAC=∠BAD-∠OAB+∠CAD=90° ∴是的切线; (2)试题错误. 【点睛】本题考查了圆的切线的判定,证得∠OAC=90°是解答本题的关键. 22.2019年12月23日,湖南省政府批准,全国“十三五”规划重大水利工程一邵阳资水犬木塘水库,将于2020年开工建设施工测绘中,饮水干渠需经过一座险峻的石山,如图所示,表示需铺设的干渠引水管道,经测量,A,B,C所处位置的海拔分别为,,.若管道与水平线的夹角为30°,管道与水平线夹角为45°,求管道和的总长度(结果保留根号). 【答案】. 【解析】 【分析】 先根据题意得到BO,CB2长,在Rt△ABO中,由三角函数可得AB的长度,在Rt△BCB2中,由三角函数可得BC的长度,再相加即可得到答案. 【详解】解:根据题意知,四边形和四边形均为矩形, ,, ,, 在中,,,, ; 在中,,,, , , 即管道AB和BC的总长度为:. 【点睛】考查了解直角三角形的应用,关键是根据三角函数得到AB和BC的长度. 23.“新冠病毒”疫情防控期间,我市积极开展“停课不停学”网络教学活动,了了解和指导学生有效进行网络学习,某校对学生每天在家网络学习时间进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图①,图②两幅统计图(均不完整),请根据统计图解答以下问题: XX学校“停课不停学”网络学习时间 调查表 亲爱的同学,你好! 为了了解和更好地指导你进行“停课不停学”网络学习,请在表格中选择一项符合你学习时间的选项,在其后的空格内打“√”. 平均每天利用网络学习时间问卷调查表 选项 学习时间(小时) A B C D (1)本次接受问卷调查的学生共有___________人; (2)请补全图①中的条形统计图; (3)图②中,D选项所对应的扇形圆心角为_________度; (4)若该校共有1500名学生,请你估计该校学生“停课不停学”期间平均每天利用网络学习时间在C选项的有多少人? 【答案】(1)100 (2)见详解 (3)18 o (4)600 【解析】 【分析】 根据扇形图和条形图A选项的联系可以算出来总人数,进而求出B选项的人数,D选项圆心角和1500人中C选项的人数. 【详解】(1)15÷15%=100(人) (2)如图选B的人数:100-40-15-5=40(人) (3)360 o ×=18 o (4)1500 ×=600(人) 【点睛】本题主要考察了,条形统计图,扇形统计图等知识点,准确的找出它们的联系是解题关键. 24.2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A、B两种类型的便携式风扇到地摊一条街出售.已知2台A型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元. (1)求A型风扇、B型风扇进货的单价各是多少元? (2)小丹准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案? 【答案】(1)A型风扇、B型风扇进货的单价各是10元和16元;(2)丹4种进货方案分别是:①进A型风扇72台,B型风扇28台;②进A型风扇73台,B型风扇27台;③进A型风扇74台,B型风扇26台;①进A型风扇75台,B型风扇24台. 【解析】 【分析】 (1)设A型风扇、B型风扇进货的单价各是x元和y元,再根据“2台A型风扇和5台B型风扇进价共100元”和“ 3台A型风扇和2台B型风扇进价共62元”两个等量关系列二元一次方程组解答即可; (2)设购进A型风扇a台、则B型风扇购进(100-a)台,再根据 “购进A、B两种风扇的总金额不超过1170元”和“A型风扇不超过B型风扇数量的3倍”两个不等关系列不等式组求出a的整数解的个数即可. 【详解】解:(1)设A型风扇、B型风扇进货的单价各是x元和y元 由题意得: ,解得 答:A型风扇、B型风扇进货的单价各是10元和16元; (2)设购进A型风扇a台、则B型风扇购进(100-a)台 有题意得,解得: ∴a可以取72、73、74、75 ∴小丹4种进货方案分别是:①进A型风扇72台,B型风扇28台;②进A型风扇73台,B型风扇27台;③进A型风扇74台,B型风扇26台;①进A型风扇75台,B型风扇24台. 【点睛】本题考查了二元一次方程组和一元一次不等式组的应用,根据题意确定等量关系和不等关系是解答本题的关键. 25.已知:如图①,将一块45°角的直角三角板与正方形的一角重合,连接,点M是的中点,连接. (1)请你猜想与的数量关系是__________. (2)如图②,把正方形绕着点D顺时针旋转角(). ①与的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长到点N,使,连接) ②求证:; ③若旋转角,且,求的值.(可不写过程,直接写出结果) 【答案】(1)AF=2DM(2)①成立,理由见解析②见解析③ 【解析】 【分析】 (1)根据题意合理猜想即可; (2)①延长到点N,使,连接,先证明△MNC≌△MDE,再证明△ADF≌△DCN,得到AF=DN,故可得到AF=2DM; ②根据全等三角形的性质和直角的换算即可求解; ③依题意可得∠AFD=∠EDM=30°,可设AG=k,得到DG,AD,FG,ED的长,故可求解. 【详解】(1)猜想与的数量关系是AF=2DM, 故答案为:AF=2DM; (2)①AF=2DM仍然成立, 理由如下:延长到点N,使,连接, ∵M是CE中点, ∴CM=EM 又∠CMN=∠EMD, ∴△MNC≌△MDE ∴CN=DE=DF,∠MNC=∠MDE ∴CN∥DE, 又AD∥BC ∴∠NCB=∠EDA ∴△ADF≌△DCN ∴AF=DN ∴AF=2DM ②∵△ADF≌△DCN ∴∠NDC=∠FAD, ∵∠CDA=90°, ∴∠NDC+∠NDA=90° ∴∠FAD+∠NDA=90° ∴AF⊥DM ③∵, ∴∠EDC=90°-45°=45° ∵, ∴∠EDM=∠EDC=30°, ∴∠AFD=30° 过A点作AG⊥FD的延长线于G点,∴∠ADG=90°-45°=45° ∴△ADG是等腰直角三角形, 设AG=k,则DG=k,AD=AG÷sin45°=k, FG=AG÷tan30°=k, ∴FD=ED=k-k 故=. 【点睛】此题主要考查四边形综合,解题的关键是熟知正方形的性质、旋转的特点、全等三角形的判定与性质及三角函数的运用. 26.如图,在平面直角坐标系中,矩形的边与x轴、y轴的交点分别为,抛物线过B,C两点,动点M从点D开始以每秒5个单位长度的速度沿的方向运动到达C点后停止运动.动点N从点O以每秒4个单位长度的速度沿方向运动,到达C点后,立即返回,向方向运动,到达O点后,又立即返回,依此在线段上反复运动,当点M停止运动时,点N也停止运动,设运动时间为. (1)求抛物线的解析式; (2)求点D的坐标; (3)当点M,N同时开始运动时,若以点M,D,C为顶点的三角形与以点B,O,N为顶点的三角形相似,求t的值; (4)过点D与x轴平行的直线,交抛物线的对称轴于点Q,将线段沿过点B的直线翻折,点A的对称点为,求的最小值. 【答案】(1);(2);(3)或;(4). 【解析】 【分析】 (1)将代入计算即可; (2)作于点E,证明,可得CE,DE长度,进而得到点D的坐标; (3)分为点M在AD,BC上两种情况讨论,当点M在AD上时,分为和两种情况讨论;当点M在BC上时,分为和两种情况讨论; (4)作点D关于x轴的对称F,连接QF,可得的最小值;连接BQ减去可得的最小值,综上可得的最小值. 【详解】(1)将代入得 ,解得 ∴抛物线的解析式为: (2)作于点E ∵ ∴ ∴ ∵ ∴ ∴ ∴ ∴ ∴ (3)若点M在DA上运动时, 当,则,即不成立,舍去 当,则,即,解得: 若点M在BC上运动时, 当,则,即 ∴ 当时, ∴,解得(舍去) 当时, ∴,无解; 当,则,即 ∴ 当时, ∴,解得(舍去) 当时, ∴,解得 综上所示:当时,;时 (4)作点D关于x轴的对称点F,连接QF交x轴于点N ∵点D, ∴点 由得对称轴为 ∴点 ∴ ∴ 故最小值为. 【点睛】本题考查了二次函数与几何图形综合,涉及相似三角形的性质与判定,最短路径问题的计算,熟知以上知识的应用是解题的关键. 本试卷的题干、答案和解析均由组卷网()专业教师团队编校出品。 登录组卷网可对本试卷进行单题组卷、细目表分析、布置作业、举一反三等操作。 试卷地址:在组卷网浏览本卷 组卷网是学科网旗下的在线题库平台,覆盖小初高全学段全学科、超过900万精品解析试题。 关注组卷网服务号,可使用移动教学助手功能(布置作业、线上考试、加入错题本、错题训练)。 学科网长期征集全国最新统考试卷、名校试卷、原创题,赢取丰厚稿酬,欢迎合作。 钱老师 QQ:537008204 曹老师 QQ:713000635- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖南省邵阳市2020年中考数学试题解析版 湖南省 邵阳市 2020 年中 数学试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文