2016年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版).doc
《2016年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版).doc》由会员分享,可在线阅读,更多相关《2016年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版).doc(16页珍藏版)》请在咨信网上搜索。
1、2016年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出四个选项,只有一个选项符合题目要求.1(5分)已知集合A=1,2,3,B=x|x29,则AB=()A2,1,0,1,2,3B2,1,0,1,2C1,2,3D1,22(5分)设复数z满足z+i=3i,则=()A1+2iB12iC3+2iD32i3(5分)函数y=Asin(x+)的部分图象如图所示,则()Ay=2sin(2x)By=2sin(2x)Cy=2sin(x+)Dy=2sin(x+)4(5分)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()A12BC8D45(5分)设F为抛物线
2、C:y2=4x的焦点,曲线y=(k0)与C交于点P,PFx轴,则k=()AB1CD26(5分)圆x2+y22x8y+13=0的圆心到直线ax+y1=0的距离为1,则a=()ABCD27(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A20B24C28D328(5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()ABCD9(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A7B1
3、2C17D3410(5分)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()Ay=xBy=lgxCy=2xDy=11(5分)函数f(x)=cos2x+6cos(x)的最大值为()A4B5C6D712(5分)已知函数f(x)(xR)满足f(x)=f(2x),若函数y=|x22x3|与 y=f(x) 图象的交点为(x1,y1),(x2,y2),(xm,ym),则xi=()A0BmC2mD4m二、填空题:本题共4小题,每小题5分.13(5分)已知向量=(m,4),=(3,2),且,则m= 14(5分)若x,y满足约束条件,则z=x2y的最小值为 15(5分)ABC的内角A,
4、B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b= 16(5分)有三张卡片,分别写有1和2,1和3,2和3甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 三、解答题:解答应写出文字说明、证明过程或演算步骤.17(12分)等差数列an中,a3+a4=4,a5+a7=6()求an的通项公式;()设bn=an,求数列bn的前10项和,其中x表示不超过x的最大整数,如0.9=0,2.6=218(12分)某险种的基本保费为a(单位:
5、元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数012345保费0.85aa1.25a1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数012345频数605030302010(I)记A为事件:“一续保人本年度的保费不高于基本保费”求P(A)的估计值;()记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”求P(B)的估计值;()求续保人本年度的平均保费估计值19(12分)如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点
6、H,将DEF沿EF折到DEF的位置()证明:ACHD;()若AB=5,AC=6,AE=,OD=2,求五棱锥DABCFE体积20(12分)已知函数f(x)=(x+1)lnxa(x1)(I)当a=4时,求曲线y=f(x)在(1,f(1)处的切线方程;(II)若当x(1,+)时,f(x)0,求a的取值范围21(12分)已知A是椭圆E:+=1的左顶点,斜率为k(k0)的直线交E于A,M两点,点N在E上,MANA(I)当|AM|=|AN|时,求AMN的面积(II)当2|AM|=|AN|时,证明:k2请考生在第2224题中任选一题作答,如果多做,则按所做的第一题计分.选修4-1:几何证明选讲22(10分)
7、如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DFCE,垂足为F()证明:B,C,G,F四点共圆;()若AB=1,E为DA的中点,求四边形BCGF的面积选项4-4:坐标系与参数方程23在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25()以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;()直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率选修4-5:不等式选讲24已知函数f(x)=|x|+|x+|,M为不等式f(x)2的解集()求M;()证明:当a,bM时,|a+b|1+ab|2016年全国统一高
8、考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出四个选项,只有一个选项符合题目要求.1(5分)已知集合A=1,2,3,B=x|x29,则AB=()A2,1,0,1,2,3B2,1,0,1,2C1,2,3D1,2【考点】1E:交集及其运算菁优网版权所有【专题】11:计算题;35:转化思想;4O:定义法;5J:集合【分析】先求出集合A和B,由此利用交集的定义能求出AB的值【解答】解:集合A=1,2,3,B=x|x29=x|3x3,AB=1,2故选:D【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用2(5分)设复数z满
9、足z+i=3i,则=()A1+2iB12iC3+2iD32i【考点】A5:复数的运算菁优网版权所有【专题】11:计算题;4O:定义法;5N:数系的扩充和复数【分析】根据已知求出复数z,结合共轭复数的定义,可得答案【解答】解:复数z满足z+i=3i,z=32i,=3+2i,故选:C【点评】本题考查的知识点是复数代数形式的加减运算,共轭复数的定义,难度不大,属于基础题3(5分)函数y=Asin(x+)的部分图象如图所示,则()Ay=2sin(2x)By=2sin(2x)Cy=2sin(x+)Dy=2sin(x+)【考点】HK:由y=Asin(x+)的部分图象确定其解析式菁优网版权所有【专题】35:
10、转化思想;4R:转化法;57:三角函数的图像与性质【分析】根据已知中的函数y=Asin(x+)的部分图象,求出满足条件的A,值,可得答案【解答】解:由图可得:函数的最大值为2,最小值为2,故A=2,=,故T=,=2,故y=2sin(2x+),将(,2)代入可得:2sin(+)=2,则=满足要求,故y=2sin(2x),故选:A【点评】本题考查的知识点是由y=Asin(x+)的部分图象确定其解析式,确定各个参数的值是解答的关键4(5分)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()A12BC8D4【考点】LG:球的体积和表面积菁优网版权所有【专题】11:计算题;34:方程思想;49
11、:综合法;5U:球【分析】先通过正方体的体积,求出正方体的棱长,然后求出球的半径,即可求出球的表面积【解答】解:正方体体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12故选:A【点评】本题考查学生的空间想象能力,体积与面积的计算能力,是基础题5(5分)设F为抛物线C:y2=4x的焦点,曲线y=(k0)与C交于点P,PFx轴,则k=()AB1CD2【考点】K8:抛物线的性质菁优网版权所有【专题】35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程【分析】根据已知,结合抛物线的性质,求出P点坐标,再由反比例函数的性质,可得k值【解答】解:抛
12、物线C:y2=4x的焦点F为(1,0),曲线y=(k0)与C交于点P在第一象限,由PFx轴得:P点横坐标为1,代入C得:P点纵坐标为2,故k=2,故选:D【点评】本题考查的知识点是抛物线的简单性质,反比例函数的性质,难度中档6(5分)圆x2+y22x8y+13=0的圆心到直线ax+y1=0的距离为1,则a=()ABCD2【考点】IT:点到直线的距离公式;J9:直线与圆的位置关系菁优网版权所有【专题】35:转化思想;4R:转化法;5B:直线与圆【分析】求出圆心坐标,代入点到直线距离方程,解得答案【解答】解:圆x2+y22x8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y1=0的距离d
13、=1,解得:a=,故选:A【点评】本题考查的知识点是圆的一般方程,点到直线的距离公式,难度中档7(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A20B24C28D32【考点】L!:由三视图求面积、体积菁优网版权所有【专题】15:综合题;35:转化思想;49:综合法;5F:空间位置关系与距离【分析】空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面【解答】解:由三视图知,空间几何体是一个组合体,上面是一
14、个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长是=4,圆锥的侧面积是24=8,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,圆柱表现出来的表面积是22+224=20空间组合体的表面积是28,故选:C【点评】本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端8(5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()ABCD【考点】CF:几何概型菁优网版权所有【专题】11:计算题;34:方程思想;49:综合法;5I:概率与统计
15、【分析】求出一名行人前25秒来到该路口遇到红灯,即可求出至少需要等待15秒才出现绿灯的概率【解答】解:红灯持续时间为40秒,至少需要等待15秒才出现绿灯,一名行人前25秒来到该路口遇到红灯,至少需要等待15秒才出现绿灯的概率为=故选:B【点评】本题考查概率的计算,考查几何概型,考查学生的计算能力,比较基础9(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A7B12C17D34【考点】EF:程序框图菁优网版权所有【专题】11:计算题;28:操作型;5K:算法和程序框图【分析】根据已知的程序框图
16、可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案【解答】解:输入的x=2,n=2,当输入的a为2时,S=2,k=1,不满足退出循环的条件;当再次输入的a为2时,S=6,k=2,不满足退出循环的条件;当输入的a为5时,S=17,k=3,满足退出循环的条件;故输出的S值为17,故选:C【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答10(5分)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()Ay=xBy=lgxCy=2xDy=【考点】4K:对数函数的定义域;4L:对数函数的值域与最值菁优网版权
17、所有【专题】11:计算题;4O:定义法;51:函数的性质及应用【分析】分别求出各个函数的定义域和值域,比较后可得答案【解答】解:函数y=10lgx的定义域和值域均为(0,+),函数y=x的定义域和值域均为R,不满足要求;函数y=lgx的定义域为(0,+),值域为R,不满足要求;函数y=2x的定义域为R,值域为(0,+),不满足要求;函数y=的定义域和值域均为(0,+),满足要求;故选:D【点评】本题考查的知识点是函数的定义域和值域,熟练掌握各种基本初等函数的定义域和值域,是解答的关键11(5分)函数f(x)=cos2x+6cos(x)的最大值为()A4B5C6D7【考点】HW:三角函数的最值菁
18、优网版权所有【专题】33:函数思想;4J:换元法;56:三角函数的求值;57:三角函数的图像与性质【分析】运用二倍角的余弦公式和诱导公式,可得y=12sin2x+6sinx,令t=sinx(1t1),可得函数y=2t2+6t+1,配方,结合二次函数的最值的求法,以及正弦函数的值域即可得到所求最大值【解答】解:函数f(x)=cos2x+6cos(x)=12sin2x+6sinx,令t=sinx(1t1),可得函数y=2t2+6t+1=2(t)2+,由1,1,可得函数在1,1递增,即有t=1即x=2k+,kZ时,函数取得最大值5故选:B【点评】本题考查三角函数的最值的求法,注意运用二倍角公式和诱导
19、公式,同时考查可化为二次函数的最值的求法,属于中档题12(5分)已知函数f(x)(xR)满足f(x)=f(2x),若函数y=|x22x3|与 y=f(x) 图象的交点为(x1,y1),(x2,y2),(xm,ym),则xi=()A0BmC2mD4m【考点】&2:带绝对值的函数;&T:函数迭代;3V:二次函数的性质与图象菁优网版权所有【专题】35:转化思想;4R:转化法;51:函数的性质及应用【分析】根据已知中函数函数f(x)(xR)满足f(x)=f(2x),分析函数的对称性,可得函数y=|x22x3|与 y=f(x) 图象的交点关于直线x=1对称,进而得到答案【解答】解:函数f(x)(xR)满
20、足f(x)=f(2x),故函数f(x)的图象关于直线x=1对称,函数y=|x22x3|的图象也关于直线x=1对称,故函数y=|x22x3|与 y=f(x) 图象的交点也关于直线x=1对称,故xi=2=m,故选:B【点评】本题考查的知识点是二次函数的图象和性质,函数的对称性质,难度中档二、填空题:本题共4小题,每小题5分.13(5分)已知向量=(m,4),=(3,2),且,则m=6【考点】9K:平面向量共线(平行)的坐标表示菁优网版权所有【专题】11:计算题;29:规律型;5A:平面向量及应用【分析】直接利用向量共线的充要条件列出方程求解即可【解答】解:向量=(m,4),=(3,2),且,可得1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016年全国统一高考数学试卷文科新课标含解析版 2016 全国 统一 高考 数学试卷 文科 新课 解析
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。