成都七中(高新校区)人教版(七年级)初一下册数学期末压轴难题测试题及答案.doc
《成都七中(高新校区)人教版(七年级)初一下册数学期末压轴难题测试题及答案.doc》由会员分享,可在线阅读,更多相关《成都七中(高新校区)人教版(七年级)初一下册数学期末压轴难题测试题及答案.doc(25页珍藏版)》请在咨信网上搜索。
成都七中(高新校区)人教版(七年级)初一下册数学期末压轴难题测试题及答案 一、选择题 1.如图,与是同旁内角,它们是由( ) A.直线,被直线所截形成的 B.直线,被直线所截形成的 C.直线,被直线所截形成的 D.直线,被直线所截形成的 2.下列所示的车标图案,其中可以看作由基本图案经过平移得到的是( ) A. B. C. D. 3.如果点P(12m,m)的横坐标与纵坐标互为相反数,则点P一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.在以下三个命题中,正确的命题有( ) ①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c相交 ②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c ③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ互补 A.② B.①② C.②③ D.①②③ 5.下列几个命题中,真命题有( ) ①两条直线被第三条直线所截,内错角相等; ②如果和是对顶角,那么; ③一个角的余角一定小于这个角的补角; ④三角形的一个外角大于它的任一个内角. A.1个 B.2个 C.3个 D.4 6.下列说法正确的是( ) A.9的立方根是3 B.算术平方根等于它本身的数一定是1 C.﹣2是4的一个平方根 D.的算术平方根是2 7.如图:AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①OF平分∠BOD;②∠POE=∠BOF;③∠BOE=70°;④∠POB=2∠DOF,其中结论正确的序号是( ) A.①②③ B.①②④ C.①③④ D.①②③④ 8.如图,在平面直角坐标系中,一动点从原点O出发,按“向上、向右、向下、向下、向右、向上…”的方向依次不断地移动,每次移动1个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),…那么点A23的坐标是( ) A.(7,﹣1) B.(8,1) C.(7,1) D.(8,﹣1) 二、填空题 9.计算_______________. 10.已知点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,那么a+b=_____. 11.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为_____. 12.如图,直线 a//b,若∠1 = 40°,则∠2 的度数是______. 13.如图,在中,若将沿折叠,使点与点重合,若的周长为的周长为,则_______. 14.已知为两个连续的整数,且,则_______ 15.如果点P(m+3,m﹣2)在x轴上,那么m=_____. 16.如图,在平面直角坐标系中,点,点,点,点按照这样的规律下去,点的坐标为__________. 三、解答题 17.计算题: (1); (2) 18.已知,,求下列各式的值: (1); (2). 19.如图,点F在线段AB上,点E、G在线段CD上,AB∥CD. (1)若BC平分∠ABD,∠D=100°,求∠ABC的度数; 解:∵AB∥CD(已知), ∴∠ABD+∠D=180°( ). ∵∠D=100°(已知), ∴∠ABD=80°. 又∵BC平分∠ABD,(已知), ∴∠ABC=∠ABD= °( ). (2)若∠1=∠2,求证:AE∥FG(不用写依据). 20.在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及△ABC的顶点都在格点上. (1)将△ ABC先向下平移2个单位长度,再向右平移5个单位长度得到△ A1B1C1,画出△ A1B1C1. (2)求△ A1B1C1的面积. 21.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为<<,即2<<3,所以的整数部分为2,小数部分为(﹣2) 请解答: (1)的整数部分是 ,小数部分是 ; (2)如果的小数部分为a,的整数部分为b,求a+b﹣的值. 二十二、解答题 22.观察下图,每个小正方形的边长均为1, (1)图中阴影部分的面积是多少?边长是多少? (2)估计边长的值在哪两个整数之间. 二十三、解答题 23.已知直线,点P为直线、所确定的平面内的一点. (1)如图1,直接写出、、之间的数量关系 ; (2)如图2,写出、、之间的数量关系,并证明; (3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,,求的度数. 24.如图1,在平面直角坐标系中,,且满足,过作轴于 (1)求三角形的面积. (2)发过作交轴于,且分别平分,如图2,若,求的度数. (3)在轴上是否存在点,使得三角形和三角形的面积相等?若存在,求出点坐标;若不存在;请说明理由. 25.如图,直线,、是、上的两点,直线与、分别交于点、,点是直线上的一个动点(不与点、重合),连接、. (1)当点与点、在一直线上时,,,则_____. (2)若点与点、不在一直线上,试探索、、之间的关系,并证明你的结论. 26.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,. (1)= ; (2)如图2,点C、D是、角平分线上的两点,且,求 的度数; (3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,,且,求n的值. 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据两直线被第三条直线所截,根据角位于两直线的中间,截线的同一侧是同旁内角,可得同旁内角. 【详解】 解:与是同旁内角,它们是由直线,被直线所截形成的 故选A. 【点睛】 本题考查了同旁内角的含义,熟练掌握含义是解题的关键. 2.C 【分析】 根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案. 【详解】 解:根据平移的概念,观察图形可知图案B通过平移后可以得到 解析:C 【分析】 根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案. 【详解】 解:根据平移的概念,观察图形可知图案B通过平移后可以得到. 故选C. 【点睛】 本题考查生活中的平移现象,仔细观察各选项图形是解题的关键. 3.B 【分析】 互为相反数的两个数的和为0,求出m的值,再判断出所求点的横纵坐标的符号,进而判断点P所在的象限. 【详解】 解:∵点P(1-2m,m)的横坐标与纵坐标互为相反数 ∴ 解得m=1 ∴1-2m=1-2×1=-1,m=1 ∴点P坐标为(-1,1) ∴点P在第二象限 故选B. 【点睛】 本题考查了点的坐标和相反数的定义,解决本题的关键是记住平面直角坐标系中各个象限内点的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-). 4.A 【分析】 根据直线与直线的位置关系、平行线的判定定理和同角的补角相等逐一判断即可. 【详解】 解:①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c不一定相交,如下图所示,故①错误; ②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c,故②正确; ③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ相等,故③错误 综上:正确的命题是②. 故选A. 【点睛】 此题考查的是直线的位置关系的判断和补角的性质,掌握直线与直线的位置关系、平行线的判定定理和同角的补角相等是解决此题的关键. 5.B 【分析】 根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断. 【详解】 解:两条平行直线被第三条直线所截,内错角相等,所以①错误; 如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确; 一个角的余角一定小于这个角的补角,所以③正确; 三角形的外角大于任何一个与之不相邻的一个内角,所以④错误. 故选:B. 【点睛】 本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理. 6.C 【解析】 【分析】 利用立方根、平方根和算术平方根的定义进行判断即可. 【详解】 解:9的立方根是,故A项错误; 算术平方根等于它本身的数是1和0,故B项错误; ﹣2是4的一个平方根,故C项正确; 的算术平方根是,故D项错误; 故选C. 【点睛】 本题考查了平方根、算术平方根和立方根,熟练掌握各自的定义是解题的关键. 7.A 【分析】 根据AB∥CD可得∠BOD=∠ABO=40°,利用平角得到∠COB=140°,再根据角平分线的定义得到∠BOE=70°,则③正确;利用OP⊥CD,AB∥CD,∠ABO=40°,可得∠POB=50°,∠BOF=20°,∠FOD=20°,进而可得OF平分∠BOD,则①正确;由∠EOB=70°,∠POB=50°,∠POE=20°,由∠BOF=∠POF-∠POB=20°,进而可得∠POE=∠BOF,则②正确;由②可知∠POB=50°,∠FOD=20°,则④不正确. 【详解】 ③∵AB∥CD, ∴∠BOD=∠ABO=40°, ∴∠COB=180°-40°=140°, 又∵OE平分∠BOC, ∴∠BOE=∠COB=×140°=70°, 故③正确; ①∵OP⊥CD, ∴∠POD=90°, 又∵AB∥CD, ∴∠BPO=90°, 又∵∠ABO=40°, ∴∠POB=90°-40°=50°, ∴∠BOF=∠POF-∠POB=70°-50°=20°, ∠FOD=40°-20°=20°, ∴OF平分∠BOD, 故①正确; ②∵∠EOB=70°,∠POB=90°-40°=50°, ∴∠POE=70°-50°=20°, 又∵∠BOF=∠POF-∠POB=70°-50°=20°, ∴∠POE=∠BOF, 故②正确; ④由①可知∠POB=90°-40°=50°, ∠FOD=40°-20°=20°, 故∠POB≠2∠DOF, 故④不正确. 故结论正确的是①②③, 故选A. 【点睛】 本题考查了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答. 8.D 【分析】 由题意找到动点每移动六次一个循环的规律,根据此规律即可解答. 【详解】 解:由题意得,动点每移动六次为一个循环, 则移动23次为:, 则A23的横坐标为:, 纵坐标为:, 故A23的坐 解析:D 【分析】 由题意找到动点每移动六次一个循环的规律,根据此规律即可解答. 【详解】 解:由题意得,动点每移动六次为一个循环, 则移动23次为:, 则A23的横坐标为:, 纵坐标为:, 故A23的坐标为, 故选:D. 【点睛】 本题考查了点的坐标-规律探究,根基题意得出动点每移动六次为一个循环是解题的关键. 二、填空题 9.11 【分析】 直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案. 【详解】 解:原式=2+9 =11. 故答案为:11. 【点睛】 此题主要考查了算术平方根以及有理数的乘方运算,正 解析:11 【分析】 直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案. 【详解】 解:原式=2+9 =11. 故答案为:11. 【点睛】 此题主要考查了算术平方根以及有理数的乘方运算,正确化简各数是解题关键. 10.-3. 【分析】 关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值. 【详解】 解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称, ∴, 解得, ∴a+b= 解析:-3. 【分析】 关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值. 【详解】 解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称, ∴, 解得, ∴a+b=﹣3, 故答案为:﹣3. 【点睛】 本题考查的是关于轴对称的两个点的坐标关系,掌握以上知识是解题的关键. 11.4cm 【详解】 ∵BC=10cm,BD:DC=3:2, ∴BD=6cm,CD=4cm, ∵AD是△ABC的角平分线,∠ACB=90°, ∴点D到AB的距离等于DC,即点D到AB的距离等于4cm. 解析:4cm 【详解】 ∵BC=10cm,BD:DC=3:2, ∴BD=6cm,CD=4cm, ∵AD是△ABC的角平分线,∠ACB=90°, ∴点D到AB的距离等于DC,即点D到AB的距离等于4cm. 12.140° 【详解】 解:∵a∥b,∠1=40°, ∴∠3=∠1=40°, ∴∠2=180°-∠3=180°-40°=140°. 故答案为:140°. 解析:140° 【详解】 解:∵a∥b,∠1=40°, ∴∠3=∠1=40°, ∴∠2=180°-∠3=180°-40°=140°. 故答案为:140°. 13.【分析】 根据翻折得到,根据,即可求出AC,再根据E是中点即可求解. 【详解】 沿翻折使与重合 故答案为:. 【点睛】 此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性 解析: 【分析】 根据翻折得到,根据,即可求出AC,再根据E是中点即可求解. 【详解】 沿翻折使与重合 故答案为:. 【点睛】 此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质. 14.7 【分析】 由无理数的估算,先求出a、b的值,再进行计算即可. 【详解】 解:∵, ∴, ∵、为两个连续的整数,, ∴,, ∴; 故答案为:7. 【点睛】 本题考查了无理数的估算,解题的关键是正确 解析:7 【分析】 由无理数的估算,先求出a、b的值,再进行计算即可. 【详解】 解:∵, ∴, ∵、为两个连续的整数,, ∴,, ∴; 故答案为:7. 【点睛】 本题考查了无理数的估算,解题的关键是正确求出a、b的值,从而进行解题. 15.【分析】 根据x轴上的点的纵坐标等于0列式计算即可得解. 【详解】 ∵点P(m+3,m﹣2)在x轴上, ∴m﹣2=0, 解得m=2. 故答案为:2. 【点睛】 此题考查点的坐标,熟记x轴上的点的纵 解析:【分析】 根据x轴上的点的纵坐标等于0列式计算即可得解. 【详解】 ∵点P(m+3,m﹣2)在x轴上, ∴m﹣2=0, 解得m=2. 故答案为:2. 【点睛】 此题考查点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键. 16.【分析】 观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标; 【详解】 , , , , , 故答案为: 【点睛】 本题考查了坐标系中点的规律,找到规律是解题的关键. 解析: 【分析】 观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标; 【详解】 , , , , , 故答案为: 【点睛】 本题考查了坐标系中点的规律,找到规律是解题的关键. 三、解答题 17.(1);(2) 【分析】 (1)先计算被开方数,再利用算术平方根的含义求解即可得到答案; (2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案. 【详解】 解 解析:(1);(2) 【分析】 (1)先计算被开方数,再利用算术平方根的含义求解即可得到答案; (2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案. 【详解】 解:(1), (2) 【点睛】 本题考查的是算术平方根的含义,含乘方的有理数的混合运算,掌握以上知识是解题的关键. 18.(1)44;(2)48 【分析】 (1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值; (2)将a2+b2与ab的值代入原式计算即可求出值. 【详解】 解:(1)把 解析:(1)44;(2)48 【分析】 (1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值; (2)将a2+b2与ab的值代入原式计算即可求出值. 【详解】 解:(1)把两边平方得:, 把代入得:, ∴; (2)∵,, ∴===48. 【点睛】 此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 19.(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析 【分析】 (1)根据平行线的性质求出∠ABD=80°,再根据角平分线的定义求解即可; (2)根据平行线的性质得到∠1=∠FGC,等 解析:(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析 【分析】 (1)根据平行线的性质求出∠ABD=80°,再根据角平分线的定义求解即可; (2)根据平行线的性质得到∠1=∠FGC,等量代换得到∠2=∠FGC,即可判定AE∥FG. 【详解】 (1)∵AB∥CD(已知), ∴∠ABD+∠D=180°(两直线平行,同旁内角互补), ∵∠D=100°(已知), ∴∠ABD=80°, 又∵BC平分∠ABD(已知), ∴∠ABC=∠ABD=40°(角平分线的定义). 故答案为:两直线平行,同旁内角互补;40;角平分线的定义; (2)证明:∵AB∥CD, ∴∠1=∠FGC, 又∵∠1=∠2, ∴∠2=∠FGC, ∴AE∥FG. 【点睛】 此题考查了平行线的判定与性质,熟记“两直线平行,同旁内角互补”、“两直线平行,内错角相等”、“同位角相等,两直线平行”是解题的关键. 20.(1)见解析;(2) 【分析】 (1)直接利用平移的性质得出对应点位置进而得出答案; (2)依据割补法进行计算,即可得到三角形ABC的面积. 【详解】 解:(1)如图所示,三角形A1B1C1即为所求 解析:(1)见解析;(2) 【分析】 (1)直接利用平移的性质得出对应点位置进而得出答案; (2)依据割补法进行计算,即可得到三角形ABC的面积. 【详解】 解:(1)如图所示,三角形A1B1C1即为所求; (2)如图所示,△A1B1C1的面积==. 【点睛】 本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接. 21.(1)3, ﹣3;(2)1. 【分析】 (1)根据解答即可; (2)根据2<<3得出a,根据3<<4得出b,再把a,b的值代入计算即可. 【详解】 (1)∵, ∴的整数部分是3,小数部分是﹣3, 解析:(1)3, ﹣3;(2)1. 【分析】 (1)根据解答即可; (2)根据2<<3得出a,根据3<<4得出b,再把a,b的值代入计算即可. 【详解】 (1)∵, ∴的整数部分是3,小数部分是﹣3, 故答案为:3,﹣3; (2)∵2<<3,a=﹣2, ∵3<<4, ∴b=3, a+b﹣=﹣2+3﹣=1. 【点睛】 此题考查无理数的估算,正确掌握数的平方是解题的关键. 二十二、解答题 22.(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间 【分析】 (1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可 解析:(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间 【分析】 (1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可以得到阴影正方形的边长; (2)根据,可以估算出边长的值在哪两个整数之间. 【详解】 (1)由图可知,图中阴影正方形的面积是:5×5−=17 则阴影正方形的边长为: 答:图中阴影部分的面积17,边长是 (2)∵ 所以4<<5 ∴边长的值在4与5之间; 【点睛】 本题主要考查了无理数的估算及算术平方根的定义,解题主要利用了勾股定理和正方形的面积求解,有一定的综合性,解题关键是无理数的估算. 二十三、解答题 23.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55° 【分析】 (1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360 解析:(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55° 【分析】 (1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°; (2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C; (3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根据∠PEH=∠PEG-∠GEH可得答案. 【详解】 解:(1)∠A+∠C+∠APC=360° 如图1所示,过点P作PQ∥AB, ∴∠A+∠APQ=180°, ∵AB∥CD, ∴PQ∥CD, ∴∠C+∠CPQ=180°, ∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°; (2)∠APC=∠A+∠C, 如图2,作PQ∥AB, ∴∠A=∠APQ, ∵AB∥CD, ∴PQ∥CD, ∴∠C=∠CPQ, ∵∠APC=∠APQ-∠CPQ, ∴∠APC=∠A-∠C; (3)由(2)知,∠APC=∠PAB-∠PCD, ∵∠APC=30°,∠PAB=140°, ∴∠PCD=110°, ∵AB∥CD, ∴∠PQB=∠PCD=110°, ∵EF∥BC, ∴∠BEF=∠PQB=110°, ∵EF∥BC, ∴∠BEF=∠PQB=110°, ∵∠PEG=∠PEF, ∴∠PEG=∠FEG, ∵EH平分∠BEG, ∴∠GEH=∠BEG, ∴∠PEH=∠PEG-∠GEH =∠FEG-∠BEG =∠BEF =55°. 【点睛】 此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 24.(1)4;(2)45°;(3)P(0,-1)或(0,3) 【分析】 (1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B(2,0),C(2,2),即可计算出 解析:(1)4;(2)45°;(3)P(0,-1)或(0,3) 【分析】 (1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4; (2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°; (3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算. 【详解】 解:(1)由题意知:a=−b,a−b+4=0, 解得:a=−2,b=2, ∴ A(−2,0),B(2,0),C(2,2), ∴S△ABC=; (2)∵CB∥y轴,BD∥AC, ∴∠CAB=∠ABD, ∴∠3+∠4+∠5+∠6=90°, 过E作EF∥AC, ∵BD∥AC, ∴BD∥AC∥EF, ∵AE,DE分别平分∠CAB,∠ODB, ∴∠3=∠4=∠1,∠5=∠6=∠2, ∴∠AED=∠1+∠2=×90°=45°; (3)存在.理由如下: 设P点坐标为(0,t),直线AC的解析式为y=kx+b, 把A(−2,0)、C(2,2)代入得: ,解得, ∴直线AC的解析式为y=x+1, ∴G点坐标为(0,1), ∴S△PAC=S△APG+S△CPG=|t−1|•2+|t−1|•2=4,解得t=3或−1, ∴P点坐标为(0,3)或(0,−1). 【点睛】 本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等. 25.(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解. 【分析】 (1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出 解析:(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解. 【分析】 (1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出=60°,计算∠PFD即可; (2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可. 【详解】 (1)当点与点、在一直线上时,作图如下, ∵AB∥CD,∠FHP=60°,, ∴=∠FHP=60°, ∴∠EFD=180°-∠GEP=180°-60°=120°, ∴∠PFD=120°, 故答案为:120°; (2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP. 证明:根据点P是动点,分三种情况讨论: ①当点P在AB与CD之间时, 过点P作PQ∥AB,如下图, ∵AB∥CD, ∴PQ∥AB∥CD, ∴∠AEP=∠EPQ,∠CFP=∠FPQ, ∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP, 即∠EPF =∠AEP+∠CFP; ②当点P在AB上方时,如下图所示, ∵∠AEP=∠EPF+∠EQP, ∵AB∥CD, ∴∠CFP=∠EQP, ∴∠AEP=∠EPF+∠CFP; ③当点P在CD下方时, ∵AB∥CD, ∴∠AEP=∠EQF, ∴∠EQF=∠EPF+∠CFP, ∴∠AEP=∠EPF+∠CFP, 综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP, 故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP. 【点睛】 本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题. 26.(1)100;(2)75°;(3)n=3. 【分析】 (1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB 解析:(1)100;(2)75°;(3)n=3. 【分析】 (1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB; (2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可; (3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n. 【详解】 解:(1)如图:过O作OP//MN, ∵MN//GHl ∴MN//OP//GH ∴∠NAO+∠POA=180°,∠POB+∠OBH=180° ∴∠NAO+∠AOB+∠OBH=360° ∵∠NAO=116°,∠OBH=144° ∴∠AOB=360°-116°-144°=100°; (2)分别延长AC、CD交GH于点E、F, ∵AC平分且, ∴, 又∵MN//GH, ∴; ∵, ∵BD平分, ∴, 又∵ ∴; ∴; (3)设FB交MN于K, ∵,则; ∴ ∵, ∴,, 在△FAK中,, ∴, ∴. 经检验:是原方程的根,且符合题意. 【点睛】 本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 成都 校区 人教版 年级 初一 下册 数学 期末 压轴 难题 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文