数学七年级下册数学期中试题及答案解答完整.doc
《数学七年级下册数学期中试题及答案解答完整.doc》由会员分享,可在线阅读,更多相关《数学七年级下册数学期中试题及答案解答完整.doc(24页珍藏版)》请在咨信网上搜索。
数学七年级下册数学期中试题及答案解答完整 一、选择题 1.4的平方根是() A.±2 B.2 C.﹣2 D.± 2.下列图案可以由部分图案平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中,下列各点位于第三象限的是( ) A. B. C. D. 4.下列命题中: ①若,则点在原点处; ②点一定在第四象限 ③已知点与点,m,n均不为0,则直线平行x轴; ④已知点A(2,-3),轴,且,则B点的坐标为(2,2). 以上命题是真命题的有( ) A.1个 B.2个 C.3个 D.4个 5.如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内CD上方的一点(点E不在直线AB,CD,AC上),设∠BAE=,∠DCE=.下列各式:①+,②﹣,③﹣,④180°﹣﹣,⑤360°﹣﹣中,∠AEC的度数可能是( ) A.①②③ B.①②④⑤ C.①②③⑤ D.①②③④⑤ 6.按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( ) A. B. C.2 D.3 7.如图,将一张长方形纸片沿折叠.使顶点,分别落在点,处,交于点,若,则( ) A. B. C. D. 8.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2021次碰到球桌边时,小球的位置是( ) A.(3,4) B.(5,4) C.(7,0) D.(8,1) 二、填空题 9.已知是实数,且则的值是_______. 10.点P关于y轴的对称点是(3,﹣2),则P关于原点的对称点是__. 11.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠BFD=45°;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的结论是______(填序号). 12.如图,,,,则∠CAD的度数为____________. 13.把一张长方形纸条按如图所示折叠后,若,则_______; 14.对于任意有理数a,b,规定一种新的运算a⊙b=a(a+b)﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____ 15.在平面直角坐标系中,已知线段且轴,且点的坐标是则点的坐标是____. 16.如图,一个点在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,即,…,且每秒运动一个单位,到点用时2秒,到点用时6秒,到点用时12秒,…,那么第421秒时这个点所在位置的坐标是____. 三、解答题 17.计算下列各式的值: (1)|–2|– + (–1)2021; (2). 18.求下列各式中的x值: (1)16(x+1)2=25; (2)8(1﹣x)3=125 19.如图,已知∠AED=∠C,∠DEF=∠B,试说明∠EFG+∠BDG=180∘,请完成下列填空: ∵∠AED=∠C (_________) ∴ED∥BC(_________) ∴∠DEF=∠EHC (___________) ∵∠DEF=∠B(已知) ∴_______(等量代换) ∴BD∥EH(同位角相等,两直线平行) ∴∠BDG=∠DFE(两直线平行,内错角相等) ∵_________________(邻补角的意义) ∴∠EFG+∠BDG=180∘(___________) 20.如图,每个小正方形的边长为1,利用网格点画图和无刻度的直尺画图(保留画图痕迹): (I)在方格纸内将三角形经过一次平移后得到三角形,图中标出了点的对应点,画出三角形; (2)过点画线段使且; (3)图中与的关系是______; (4)点在线段上,,点是直线上一动点线段的最小值为______. 21.(阅读材料) ∵,即23,∴11<2,∴1的整数部分为1,∴1的小数部分为2 (解决问题) (1)填空:的小数部分是 ; (2)已知a是4的整数部分,b是4的小数部分,求代数式(﹣a)3+(b+4)2的值. 22.如图,在网格中,每个小正方形的边长均为1,正方形的顶点都在网格的格点上. (1)求正方形的面积和边长; (2)建立适当的平面直角坐标系,写出正方形四个顶点的坐标. 23.已知,AB∥DE,点C在AB上方,连接BC、CD. (1)如图1,求证:∠BCD+∠CDE=∠ABC; (2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系; (3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值. 24.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1. (1)当∠A为70°时, ∵∠ACD-∠ABD=∠______ ∴∠ACD-∠ABD=______° ∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线 ∴∠A1CD-∠A1BD=(∠ACD-∠ABD) ∴∠A1=______°; (2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An的数量关系______; (3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______. (4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值. 【参考答案】 一、选择题 1.A 解析:A 【分析】 依据平方根的定义:如果x2=a,则x是a的平方根即可得出答案. 【详解】 解:∵(±2)2=4, ∴4的平方根是±2. 故选:A. 【点睛】 本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键. 2.C 【分析】 根据平移的定义,逐一判断即可. 【详解】 解:、是旋转变换,不是平移,选项错误,不符合题意; 、轴对称变换,不是平移,选项错误,不符合题意; 、是平移,选项正确,符合题意; 、图形的大 解析:C 【分析】 根据平移的定义,逐一判断即可. 【详解】 解:、是旋转变换,不是平移,选项错误,不符合题意; 、轴对称变换,不是平移,选项错误,不符合题意; 、是平移,选项正确,符合题意; 、图形的大小发生了变化,不是平移,选项错误,不符合题意. 故选:C. 【点睛】 本题考查平移变换,解题的关键是判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变. 3.D 【分析】 根据各象限内点的坐标特征对各选项分析判断后利用排除法求解. 【详解】 解:A、(0,3)在y轴上,故本选项不符合题意; B、(−2,1)在第二象限,故本选项不符合题意; C、(1,−2)在第四象限,故本选项不符合题意; D、(-1,-1)在第三象限,故本选项符合题意. 故选:D. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 利用有理数的性质和坐标轴上点的坐标特征可对①进行判断;利用或可对②进行判断;利用、点的纵坐标相同可对③进行判断;通过把点坐标向上或向下平移5个单位得到点坐标可对④进行判断. 【详解】 解:若,则或,所以点坐标轴上,所以①为假命题; ,点一定在第四象限,所以②为真命题; 已知点与点,,均不为0,则直线平行轴,所以③为真命题; 已知点,轴,且,则点的坐标为或,所以④为假命题. 故选:B. 【点睛】 本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 5.C 【分析】 根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可. 【详解】 解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=, ∵∠AOC=∠BAE1+∠AE1C, ∴∠AE1C=﹣. (2)如图2,过E2作AB平行线,则由AB∥CD, 可得∠1=∠BAE2=,∠2=∠DCE2=, ∴∠AE2C=+. (3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=, ∵∠BAE3=∠BOE3+∠AE3C, ∴∠AE3C=﹣. (4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°, ∴∠AE4C=360°﹣﹣. 综上所述,∠AEC的度数可能是﹣,+,﹣,360°﹣﹣. 故选:C. 【点睛】 本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等. 6.A 【分析】 根据计算程序图计算即可. 【详解】 解:∵当x=64时,,,2是有理数, ∴当x=2时,算术平方根为是无理数, ∴y=, 故选:A. 【点睛】 此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键. 7.B 【分析】 根据两直线平行,内错角相等求出,再根据平角的定义求出,然后根据折叠的性质可得,进而即可得解. 【详解】 解:∵在矩形纸片中,,, , , ∵折叠, ∴, . 故选:B. 【点睛】 本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出是解题的关键,另外,根据折叠前后的两个角相等也很重要. 8.B 【分析】 根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置. 【详解】 解:由图可得, 点(1,0)第一次碰撞后的点的坐标为(0 解析:B 【分析】 根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置. 【详解】 解:由图可得, 点(1,0)第一次碰撞后的点的坐标为(0,1), 第二次碰撞后的点的坐标为(3,4), 第三次碰撞后的点的坐标为(7,0), 第四次碰撞后的点的坐标为(8,1), 第五次碰撞后的点的坐标为(5,4), 第六次碰撞后的点的坐标为(1,0), …, ∵2021÷6=336…5, ∴小球第2021次碰到球桌边时,小球的位置是(5,4), 故选:B. 【点睛】 本题考查了坐标确定位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答. 二、填空题 9.6 【解析】 【分析】 根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案. 【详解】 解:由题意得,x−2=0,y-3=0, 解得,x=2,y=3, xy=6, 故答案为:6. 【点睛 解析:6 【解析】 【分析】 根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案. 【详解】 解:由题意得,x−2=0,y-3=0, 解得,x=2,y=3, xy=6, 故答案为:6. 【点睛】 本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键. 10.【分析】 直接利用关于y轴对称点的性质得出P点坐标,再利用关于原点对称点的性质得出答案. 【详解】 解:∵点P关于y轴的对称点是, ∴点, 则P关于原点的对称点是. 故答案为:. 【点睛】 本题考 解析: 【分析】 直接利用关于y轴对称点的性质得出P点坐标,再利用关于原点对称点的性质得出答案. 【详解】 解:∵点P关于y轴的对称点是, ∴点, 则P关于原点的对称点是. 故答案为:. 【点睛】 本题考查关于x轴、y轴对称的点的坐标求法、关于原点对称的点的坐标求法,牢记相关性质是解题关键. 11.①②③. 【分析】 由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠B 解析:①②③. 【分析】 由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠BFD=∠BCF+∠CBF=45°,可判定②;根据同角的余角性质可得∠GCE=∠ABC,由角的和差∠GCD=∠ABC+∠ACD=∠ADC,可判定③;由∠GCE+∠ACB=90°,可得∠GCE与∠ACB互余,可得CA平分∠BCG不正确,可判定④. 【详解】 解:∵EG∥BC,且CG⊥EG于G, ∴∠BCG+∠G=180°, ∵∠G=90°, ∴∠BCG=180°﹣∠G=90°, ∵GE∥BC, ∴∠GEC=∠BCA, ∵CD平分∠BCA, ∴∠GEC=∠BCA=2∠DCB, ∴①正确. ∵CD,BE平分∠BCA,∠ABC ∴∠BFD=∠BCF+∠CBF=(∠BCA+∠ABC)=45°, ∴②正确. ∵∠GCE+∠ACB=90°,∠ABC+∠ACB=90°, ∴∠GCE=∠ABC, ∵∠GCD=∠GCE+∠ACD=∠ABC+∠ACD,∠ADC=∠ABC+∠BCD, ∴∠ADC=∠GCD, ∴③正确. ∵∠GCE+∠ACB=90°, ∴∠GCE与∠ACB互余, ∴CA平分∠BCG不正确, ∴④错误. 故答案为:①②③. 【点睛】 本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键. 12.【分析】 根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数. 【详解】 解:∵∥,, ∴, ∴ 故答案为: 【点睛】 本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是 解析: 【分析】 根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数. 【详解】 解:∵∥,, ∴, ∴ 故答案为: 【点睛】 本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解答此题的关键. 13.55° 【分析】 直接根据补角的定义可知∠AOB′+∠BOG+∠B′OG=180°,再由图形翻折变换的性质可知∠BOG=∠B′OG,再由平行线的性质可得出结论. 【详解】 解:∵∠AOB′=70°, 解析:55° 【分析】 直接根据补角的定义可知∠AOB′+∠BOG+∠B′OG=180°,再由图形翻折变换的性质可知∠BOG=∠B′OG,再由平行线的性质可得出结论. 【详解】 解:∵∠AOB′=70°,∠AOB′+∠BOG+∠B′OG=180°, ∴∠BOG+∠B′OG=180°-70°=110°. ∵∠B′OG由∠BOG翻折而成, ∴∠BOG=∠B′OG, ∴∠BOG= =55°. ∵AB∥CD, ∴∠OGD=∠BOG=55°. 故答案为:55°. 【点睛】 本题考查的是平行线的性质,熟知图形翻折不变性的性质是解答此题的关键. 14.-9 【分析】 直接利用已知运算法则计算得出答案. 【详解】 (﹣2)⊙6 =﹣2×(﹣2+6)﹣1 =﹣2×4﹣1 =﹣8﹣1 =﹣9. 故答案为﹣9. 【点睛】 此题考察新定义形式的有理数计算, 解析:-9 【分析】 直接利用已知运算法则计算得出答案. 【详解】 (﹣2)⊙6 =﹣2×(﹣2+6)﹣1 =﹣2×4﹣1 =﹣8﹣1 =﹣9. 故答案为﹣9. 【点睛】 此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可. 15.或 【分析】 设点B的坐标为,然后根据轴得出B点的纵坐标,再根据即可得出B点的横坐标. 【详解】 设点B的坐标为, ∵轴,点A(1,2) ∴B点的纵坐标也是2,即 . ∵, 或 , 解得或 , ∴点 解析:或 【分析】 设点B的坐标为,然后根据轴得出B点的纵坐标,再根据即可得出B点的横坐标. 【详解】 设点B的坐标为, ∵轴,点A(1,2) ∴B点的纵坐标也是2,即 . ∵, 或 , 解得或 , ∴点B的坐标为或. 故答案为:或. 【点睛】 本题主要考查平行于x轴的线段上的点的特点,掌握平行于x轴的线段上的点的特点是解题的关键. 16.【分析】 由题目中所给的点运动的特点找出规律,即可解答. 【详解】 由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y) 到达(1,0)时用了3秒,到达(2,0)时用了4秒, 从(2, 解析: 【分析】 由题目中所给的点运动的特点找出规律,即可解答. 【详解】 由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y) 到达(1,0)时用了3秒,到达(2,0)时用了4秒, 从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒; 从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒; 依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒…, 可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒, ∵20×20=400 ∴第421秒时这个点所在位置的坐标为(19,20), 故答案为:(19,20). 【点睛】 本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键. 三、解答题 17.(1)3;(2)–2 【分析】 (1)根据绝对值、立方根、乘方解决此题. (2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题. 【详解】 解:(1)原式=, =3. (2)原式, = 解析:(1)3;(2)–2 【分析】 (1)根据绝对值、立方根、乘方解决此题. (2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题. 【详解】 解:(1)原式=, =3. (2)原式, =3+1-6, =–2. 【点睛】 本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键. 18.(1)或;(2) 【分析】 (1)根据平方根,即可解答; (2)根据立方根,即可解答. 【详解】 解:(1)等式两边都除以16,得. 等式两边开平方,得. 所以,得. 所以, 解析:(1)或;(2) 【分析】 (1)根据平方根,即可解答; (2)根据立方根,即可解答. 【详解】 解:(1)等式两边都除以16,得. 等式两边开平方,得. 所以,得. 所以, (2)等式两边都除以8,得. 等式两边开立方,得. 所以, 【点睛】 本题考查平方根、立方根,解题关键是熟记平方根、立方根. . 19.已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B;∠DFE+∠EFG =180∘;等量代换 【分析】 根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠ 解析:已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B;∠DFE+∠EFG =180∘;等量代换 【分析】 根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠DEF=∠EHC,再运用等量代换得到∠EHC =∠B,最后推出BD∥EH,∠BDG=∠DFE,再利用邻补角的意义推出结论,据此回答问题. 【详解】 解:∵∠AED=∠C (已知) ∴ED∥BC(同位角相等,两直线平行) ∴∠DEF=∠EHC (两直线平行,内错角相等) ∵∠DEF=∠B(已知) ∴∠EHC =∠B (等量代换) ∴BD∥EH(同位角相等,两直线平行) ∴∠BDG=∠DFE(两直线平行,内错角相等) ∵∠DFE+∠EFG =180∘(邻补角的意义) ∴∠EFG+∠BDG=180∘(等量代换). 【点睛】 本题主要考查平行线的判定和性质,属于综合题,难度一般,熟练掌握平行线的判定和性质是解题关键. 20.(1)见解析;(2)见解析;(3),AD∥;(4) 【分析】 (1)根据平移的性质,按要求作图即可; (2)根据过点A画线段AD∥BC,AD=BC,即可; (3)由平移的性质可得,∥BC,,从而可以 解析:(1)见解析;(2)见解析;(3),AD∥;(4) 【分析】 (1)根据平移的性质,按要求作图即可; (2)根据过点A画线段AD∥BC,AD=BC,即可; (3)由平移的性质可得,∥BC,,从而可以得到,AD∥; (4)根据点到直线的距离垂线段最短,可知当BH⊥CE时BH最短,由此利用三角形面积公式求解即可. 【详解】 解:(1)如图所示,即为所求: (2)如图所示,即为所求: (3)平移的性质可得 ,∥BC,由AD=BC,AD∥BC,从而可以得到,AD∥; 故答案为:,AD∥; (4)根据点到直线的距离垂线段最短,可知当BH⊥CE时BH最短, 如图所示:∵AD∥BC, ∴ , ∴, ∴, ∴点H是直线CE上一动点线段BH的最小值为. 故答案为:. 【点睛】 本题主要考查了平移作图,点到直线的距离垂线段最短,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解. 21.(1);(2)21. 【分析】 (1)由于81<91<100,可求的整数部分,进一步得出的小数部分; (2)先求出4的整数部分和小数部分,再代入代数式进行计算即可. 【详解】 (1)∵81<91<1 解析:(1);(2)21. 【分析】 (1)由于81<91<100,可求的整数部分,进一步得出的小数部分; (2)先求出4的整数部分和小数部分,再代入代数式进行计算即可. 【详解】 (1)∵81<91<100, ∴9<<10, ∴的整数部分是9, ∴的小数部分是9; (2)∵16<21<25, ∴4<<5, ∵a是4的整数部分,b是4的小数部分, ∴a=4﹣4=0,b4, ∴(﹣a)3+(b+4)2=0+21=21. 【点睛】 本题考查了估算无理数的大小,熟练掌握估算无理数大小的方法和无理数整数部分和小数部分的表示方法是解题关键. 22.(1)面积为29,边长为;(2),,,,图见解析. 【分析】 (1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可; (2)建立适当的坐标系后写出四个顶点的坐标 解析:(1)面积为29,边长为;(2),,,,图见解析. 【分析】 (1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可; (2)建立适当的坐标系后写出四个顶点的坐标即可. 【详解】 解:(1)正方形的面积, 正方形边长为; (2)建立如图平面直角坐标系, 则,,,. 【点睛】 本题考查了算术平方根及坐标与图形的性质及割补法求面积,从图形中整理出直角三角形是进一步解题的关键. 23.(1)证明见解析;(2);(3). 【分析】 (1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证; (2)过点作,同(1)的方法,先根据平行线的性质 解析:(1)证明见解析;(2);(3). 【分析】 (1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证; (2)过点作,同(1)的方法,先根据平行线的性质得出,,从而可得,再根据垂直的定义可得,由此即可得出结论; (3)过点作,延长至点,先根据平行线的性质可得,,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案. 【详解】 证明:(1)如图,过点作, , , , ,即, , ; (2)如图,过点作, , , , ,即, , , , , ; (3)如图,过点作,延长至点, , , , , 平分,平分, , 由(2)可知,, , 又, . 【点睛】 本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键. 24.(1)∠A;70°;35°; (2)∠A=2n∠An (3)25° (4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°. 【分析】 (1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD 解析:(1)∠A;70°;35°; (2)∠A=2n∠An (3)25° (4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°. 【分析】 (1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解; (2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律; (3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论; (4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系. 【详解】 解:(1)当∠A为70°时, ∵∠ACD-∠ABD=∠A, ∴∠ACD-∠ABD=70°, ∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线, ∴∠A1CD-∠A1BD=(∠ACD-∠ABD) ∴∠A1=35°; 故答案为:A,70,35; (2)∵A1B、A1C分别平分∠ABC和∠ACD, ∴∠ACD=2∠A1CD,∠ABC=2∠A1BC, 而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC, ∴∠BAC=2∠A1=80°, ∴∠A1=40°, 同理可得∠A1=2∠A2, 即∠BAC=22∠A2=80°, ∴∠A2=20°, ∴∠A=2n∠An, 故答案为:∠A=2∠An. (3)∵∠ABC+∠DCB=360°-(∠A+∠D), ∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F, ∴360°-(α+β)=180°-2∠F, 2∠F=∠A+∠D-180°, ∴∠F=(∠A+∠D)-90°, ∵∠A+∠D=230°, ∴∠F=25°; 故答案为:25°. (4)①∠Q+∠A1的值为定值正确. ∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线 ∴∠A1=∠A1CD-∠A1BD= ∠BAC, ∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线, ∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC, ∴∠Q=180°-(∠QEC+∠QCE)=180°-∠BAC, ∴∠Q+∠A1=180°. 【点睛】 本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 年级 下册 期中 试题 答案 解答 完整
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文