2023南昌市数学八年级上册期末试卷含答案.doc
《2023南昌市数学八年级上册期末试卷含答案.doc》由会员分享,可在线阅读,更多相关《2023南昌市数学八年级上册期末试卷含答案.doc(20页珍藏版)》请在咨信网上搜索。
2023南昌市数学八年级上册期末试卷含答案 一、选择题 1、剪纸是中国最古老的民间艺术之一,其在视觉上给人以透空的感觉和艺术享受.下列剪纸作品中既是中心对称图形又是轴对称图形的是( ) A. B. C. D. 2、华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000070米.数据0.00000007用科学记数法表示为( ) A. B. C. D. 3、下列计算正确的是( ) A. B. C. D. 4、若式子有意义,则的取值范围是( ) A. B. C.且 D.且 5、下列等式从左到右的变形,是因式分解的是( ) A. B. C. D. 6、下列各式从左至右变形一定正确的是( ) A. B. C. D. 7、如图,在菱形中,添加一个条件不能证明的是( ) A. B. C. D. 8、若整数使得关于的一次函数的图象经过第一、三、四象限,且使关于的分式方程的解为非负数,则符合条件的所有整数的和为( ) A.7 B.8 C.9 D.10 9、如图,将一张含有角的三角形纸片的两个顶点叠放在长方形纸条的两条对边上,若,则的度数为( ) A. B. C. D. 二、填空题 10、如图,已知,在的平分线上有一点,将一个60°角的顶点与点重合,它的两条边分别与直线,相交于点,.下列结论:(1);(2);(3);(4),,则;其中正确的有( ). A.1个 B.2个 C.3个 D.4个 11、当x=_________时,分式的值为零. 12、在平面直角坐标系中,点A(﹣3,5)与点B关于x轴对称,则点B的坐标是______. 13、已知,则实数A+B=_____. 14、若,,则的值为______. 15、如图,在中,,,以BC为边在BC的右侧作等边,点E为BD的中点,点P为CE上一动点,连结AP,BP.当的值最小时,的度数为__________. 16、已知一个多边形的内角和为1440°,那么它是 _____边形. 17、已知,则__________. 18、如图,直线PQ经过Rt△ABC的直角顶点C,△ABC的边上有两个动点D、E,点D以1cm/s的速度从点A出发,沿AC→CB移动到点B,点E以3cm/s的速度从点B出发,沿BC→CA移动到点A,两动点中有一个点到达终点后另一个点继续移动到终点.过点D、E分别作DM⊥PQ,EN⊥PQ,垂足分别为点M、N,若AC=6cm,BC=8cm,设运动时间为t,则当t=__________ s时,以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等. 三、解答题 19、分解因式: (1) (2) 20、(1)解方程:; (2)先化简,再求值:,其中a=﹣1. 21、已知:如图,点A,F,C,D在同一条直线上,点B和点E在直线AD的两侧,且AF=DC,BC∥FE,∠A=∠D.求证:AB=DE. 22、(1)在中,的角平分线和的角平分线交于点P,如图1,试猜想与的关系,直接写出结论___________:(不必写过程) (2)在中,一个外角的角平分线和一个内角的角平分线交于点P,如图2,试猜想与的关系,直接写出结论____________;(不必写过程) (3)在中,两个外角的角平分线和的角平分线交于点P,如图3,试猜想与的关系,直接写出结论_________,并予以证明. 23、某社区拟建,两类摊位以搞活“地摊经济”,每个类摊位的占地面积比每个类摊位的占地面积多2平方米.用60平方米建类摊位的个数恰好是用同样面积建类摊位个数的? (1)求每个,类摊位占地面积各为多少平方米; (2)该社区拟建,两类摊位共90个,且类摊位的数量不少于类摊位数量的3倍.求最多建多少个类摊位. 24、如图,将边长为的正方形剪出两个边长分别为,的正方形(阴影部分).观察图形,解答下列问题: (1)根据题意,用两种不同的方法表示阴影部分的面积,即用两个不同的代数式表示阴影部分的面积. 方法1:______,方法2:________; (2)从中你发现什么结论呢?_________; (3)运用你发现的结论,解决下列问题: ①已知,,求的值; ②已知,求的值. 25、在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点. (1)当2a2+4ab+4b2+2a+1=0时,求A,B的坐标; (2)当a+b=0时, ①如图1,若D与P关于y轴对称,PE⊥DB并交DB延长线于E,交AB的延长线于F,求证:PB=PF; ②如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CP=AQ时,求∠APB的大小. 一、选择题 1、A 【解析】A 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A、是轴对称图形,也是中心对称图形,符合题意; B、是轴对称图形,不是中心对称图形,不合题意; C、不是轴对称图形,不是中心对称图形,不合题意; D、不是轴对称图形,是中心对称图形,不合题意. 故选:A. 【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 2、C 【解析】C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:; 故选:C. 【点睛】本题考查科学记数法;熟练掌握科学记数法中与的确定方法是解题的关键. 3、B 【解析】B 【分析】利用同底数幂的乘法的法则,合并同类项法则,积的乘方法则对各项进行运算即可. 【详解】解:A、与不是同类项,无法合并,故A不符合题意; B、,故B不符合题意; C、,故C符合题意; D、,故D不符合题意; 故选:B. 【点睛】本题主要考查同底数幂的乘法,合并同类项,积的乘方,解答的关键是对相应的运算法则的掌握. 4、C 【解析】C 【分析】根据二次根式有意义,被开方数大于等于0,分母不为0列出不等式,求解即可. 【详解】解:要使有意义, 则,, 解得:且, 故选:C. 【点睛】本题考查了二次根式有意义,分式有意义的条件,掌握被开方数是非负数以及分母不等于0是解题的关键. 5、D 【解析】D 【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断即可. 【详解】解:A. 从左边到右边的变形不属于因式分解,故本选项不符合题意; B. 从左边到右边的变形不属于因式分解,故本选项不符合题意; C. 从左边到右边的变形是整式乘法,不属于因式分解,故本选项不符合题意; D从左边到右边的变形属于因式分解,故本选项符合题意. 故答案为D. 【点睛】本题主要考查了因式分解的意义,正确应用分解因式的定义成为解答本题的关键. 6、D 【解析】D 【分析】根据分式的性质,对选项逐个判断即可,分式的分子和分母同时乘以或者除以一个不为0的数,分式的值不变. 【详解】解:A、,选项错误,不符合题意; B、,选项错误,不符合题意; C、当时,无意义,不符合题意; D、,正确,符合题意; 故选:D 【点睛】此题考查了分式的性质,掌握分式的有关性质是解题的关键. 7、C 【解析】C 【分析】先根据菱形性质得出AB=CD,∠ABE=∠CDF,利用ASA可判断A;利用AAS可判断B;根据SSA不能判断C;利用SAS可判断D. 【详解】解:∵四边形ABCD为菱形, ∴AB=CD,∠ABE=∠CDF, A. 添加, 在△ABE和△CDF中, , ∴△ABE≌△CDF(ASA), 故选项A正确,不合题意; B. 添加, 在△ABE和△CDF中, , ∴△ABE≌△CDF(AAS), 故选项B正确,不合题意; C. 添加,根据SSA条件不能判断△ABE和△CDF全等; 故选项C不正确,符合题意; D. , 在△ABE和△CDF中, , ∴△ABE≌△CDF(SAS), 故选项D正确,不合题意. 故选C. 【点睛】本题考查菱形的性质,添加条件判断三角形全等,掌握菱形性质,三角形全等判定方法是解题关键. 8、B 【解析】B 【分析】利用一次函数图象与系数的关系可求出,由关于的分式方程的解为非负数求出,且,即可求得且,再将其取值范围内的整数相加即可得出结论. 【详解】解:关于的一次函数的图象经过第一、三、四象限, , ,. 解关于的分式方程得:, 关于的分式方程的解为非负数, ,且, 且, 故且, 所有整数的和为:. 故选:B. 【点睛】本题考查了一次函数图象与系数的关系以及分式方程的解,求得的取值范围是解题的关键. 9、D 【解析】D 【分析】依据平行线的性质,即可得到∠3=∠2=50°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出∠1=50°−30°=20°. 【详解】解:如图,∵长方形纸条的对边平行,∠2=50°, ∴∠2=∠3=50°, 根据三角形外角性质,可得∠3=∠1+30°, ∴∠1=50°−30°=20°, 故选:D. 【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题的关键是掌握平行线的性质:两直线平行,同位角相等. 二、填空题 10、A 【解析】A 【分析】过点作于点,于点,根据的平分线性质及含30度直角三角形的性质可得;分三种情况考虑:当,分别在射线,射线上时;当,分别在射线的反向延长线上,射线上时;当,分别在射线上、射线反向延长线上时;通过证明,得CD=CE,OD、OC、OE间的关系,从而可用a、b表示OE,综合以上三种情况即可完成求解. 【详解】过点作于点,于点 ∵平分, ∴, ∴ ∴, ∴ON+OF=OC ①当,分别在射线,上时,此时OC≥OD,如图 ∴ ∵, ∴ ∴, ∴ ∴OE=OC−OD= a-b ②如图,当,分别在射线反向延长线,射线上时 同理可得: ∴, ∴,OE=OC+OD=a+b ③如图,当,分别在射线上、在射线反向延长线上时,OC≤OD 同理可得: ∴, ∴, 综上:只有(1)正确,(2)(3)(4)均错误 故选:A. 【点睛】本题考查了角平分线的性质定理、全等三角形的判定与性质、含30度直角三角形的性质等知识;解题的关键是熟练掌握角平分线、全等三角形的性质,从而完成求解.注意分类讨论,否则出现遗漏情况. 11、 【分析】首先根据分式值为零的条件是分子等于零且分母不等于零,得出,进而计算出x的值即可. 【详解】解:∵分式的值为零, ∴, 解得:. 故答案为: 【点睛】本题主要考查了分式值为零的条件,熟练掌握“分式值为零的条件是分子等于零且分母不等于零”是解本题的关键. 12、A 【解析】(-3,-5) 【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”求解即可. 【详解】解:∵点A(-3,5)与点B关于x轴对称, ∴点B的坐标为(-3,-5). 故答案为:(-3,-5). 【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数. 13、A 【解析】5 【分析】已知等式右边通分并利用同分母分式的加法法则计算,再根据分式相等的条件即可求出所求. 【详解】解:等式整理得:, ∴5x+1=A(x+2)+B(x-1) ∴5x+1=(A+B)x+2A-B, 即A+B=4、 故答案为:4、 【点睛】本题考查了分式的加减.解题的关键是通分. 14、 【分析】利用同底数幂的除法的法则对所求的式子进行整理,再代入运算即可. 【详解】解:∵2x=3,4y=2, ∴22y=2, ∴2x-2y =2x÷22y =3÷2 =, 故答案为:. 【点睛】本题主要考查同底数幂的除法,幂的乘方,解答的关键是对相应的运算法则的掌握. 15、15° 【分析】连接PD、AD,设AD与CE交于点P1,利用等边三角形的性质证得∠CBD=∠BCD=∠BDC=60°,PD=BP,根据两点之间线段最短得出当点A、P、D共线时即点P运动到P1时,AP 【解析】15° 【分析】连接PD、AD,设AD与CE交于点P1,利用等边三角形的性质证得∠CBD=∠BCD=∠BDC=60°,PD=BP,根据两点之间线段最短得出当点A、P、D共线时即点P运动到P1时,AP+BP有最小值,连接BP1,根据等边对等角证得∠CBP1=∠CDP1=∠CAD,再根据三角形的外角性质即可求解. 【详解】解:连接PD、AD,设AD与CE交于点P1, ∵△BCD是等边三角形,点E为BC的中点, ∴∠CBD=∠BCD=∠BDC=60°,BC=CD,CE⊥BD,BE=DE, ∴CE为线段BD的垂直平分线, ∴PD=BP, ∴当点P运动时,AP+BP=AP+PD,而AP+PD≥AD, ∴当点A、P、D共线时即点P运动到P1时,AP+BP有最小值, 连接BP1,则BP1=DP1, ∴∠P1BD=∠P1DB,又∠CBD=∠BDC, ∴∠CBP1=∠CDP1, ∵AC=BC=CD, ∴∠CDP1=∠CAD,即 延长AC至Q, ∵∠ACB=90°,∠BCD=60°, ∴∠DCQ=90°﹣60°=30°,又∠DCQ=∠CDP1+∠CAD=2∠CDP1, ∴∠CDP1=15°,即∠CBP1=15°, ∴当的值最小时,=15°, 故答案为:15°. 【点睛】本题考查等边三角形的性质、线段垂直平分线的性质、最短路径问题、等腰三角形的性质、三角形的外角性质,熟练掌握相关性质的联系与运用,会利用两点之间线段最短解决最值问题是解答的关键. 16、十 【分析】根据多边形的内角和公式求解即可.n边形的内角的和等于:(n−2)×180° (n大于等于3且n为整数). 【详解】解:设该多边形的边数为n, 根据题意,得180°(n−2)=1440°, 【解析】十 【分析】根据多边形的内角和公式求解即可.n边形的内角的和等于:(n−2)×180° (n大于等于3且n为整数). 【详解】解:设该多边形的边数为n, 根据题意,得180°(n−2)=1440°, 解得n=10, ∴这个多边形为十边形, 故答案为:十. 【点睛】此题考查了多边形的内角和,解题的关键是熟练掌握多边形的内角和公式. 17、【分析】对两边平方,再展开进行求解即可. 【详解】∵ ∴, 即 ∴ 故答案为: 【点睛】本题考查了完全平方公式,熟练掌握完全平方公式的结构特征是解题的关键. 【解析】 【分析】对两边平方,再展开进行求解即可. 【详解】∵ ∴, 即 ∴ 故答案为: 【点睛】本题考查了完全平方公式,熟练掌握完全平方公式的结构特征是解题的关键. 18、1或或12 【分析】由以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等.可知CE=CD,而CE,CD的表示由E,D的位置决定,故需要对E,D的位置分当E在BC上,D在AC上时或当E在A 【解析】1或或12 【分析】由以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等.可知CE=CD,而CE,CD的表示由E,D的位置决定,故需要对E,D的位置分当E在BC上,D在AC上时或当E在AC上,D在AC上时,或当E到达A,D在BC上时,分别讨论. 【详解】解:当E在BC上,D在AC上,即0<t≤时, CE=(8-3t)cm,CD=(6-t)cm, ∵以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等. ∴CD=CE, ∴8-3t=6-t, ∴t=1s, 当E在AC上,D在AC上,即<t<时, CE=(3t-8)cm,CD=(6-t)cm, ∴3t-8=6-t, ∴t=s, 当E到达A,D在BC上,即≤t≤14时, CE=6cm,CD=(t-6)cm, ∴6=t-6, ∴t=12s, 故答案为:1或或11、 【点睛】本题主要考查了三角形全等的性质,解决问题的关键是对动点所在的位置进行分类,分别表示出每种情况下CD和CE的长. 三、解答题 19、(1)2x(x+2)(x-2); (2)(4-x+y)2 【分析】(1)利用提公因式法和平方差公式分解; (2)利用完全平分公式分解. (1) 解: =2x2(x-4) =2x(x+2)(x-2) 【解析】(1)2x(x+2)(x-2); (2)(4-x+y)2 【分析】(1)利用提公因式法和平方差公式分解; (2)利用完全平分公式分解. (1) 解: =2x2(x-4) =2x(x+2)(x-2) (2) =(4-x+y)2 【点睛】此题考查了多项式的分解因式,正确掌握因式分解的定义及解法是解题的关键. 20、(1)原方程无解;(2), 【分析】(1)先把分式方程化为整式方程,然后解方程,最后检验即可; (2)先根据分式的混合计算法则化简,然后代值计算即可. 【详解】解:(1) 两边同时乘以得:, 去括号 【解析】(1)原方程无解;(2), 【分析】(1)先把分式方程化为整式方程,然后解方程,最后检验即可; (2)先根据分式的混合计算法则化简,然后代值计算即可. 【详解】解:(1) 两边同时乘以得:, 去括号得:, 移项合并得:, 解得, 经检验,当时,, ∴不是原方程的解, ∴原方程无解; (2) , 当时,原式. 【点睛】本题主要考查了解分式方程,分式的化简求值,熟知相关计算方法是解题的关键. 21、见解析 【分析】证明△ABC≌△DEF即可. 【详解】∵BC∥FE, ∴∠1 =∠2 ∵AF=DC, ∴AF+FC=DC+CF. ∴AC=DF. 在△ABC和△DEF中, ∴△ABC≌△DEF( 【解析】见解析 【分析】证明△ABC≌△DEF即可. 【详解】∵BC∥FE, ∴∠1 =∠2 ∵AF=DC, ∴AF+FC=DC+CF. ∴AC=DF. 在△ABC和△DEF中, ∴△ABC≌△DEF(ASA) . ∴AB=DE. 【点睛】本题考查了平行线的性质、三角形全等的判定与性质,关键是证明三角形全等. 22、(1);(2);(3) 【分析】(1)根据三角形的内角和定理表示出∠ABC+∠ACB,再根据角平分线的定义求出∠PBC+∠PCB,然后根据三角形的内角和定理列式整理即可; (2)根据三角形的一个外角 【解析】(1);(2);(3) 【分析】(1)根据三角形的内角和定理表示出∠ABC+∠ACB,再根据角平分线的定义求出∠PBC+∠PCB,然后根据三角形的内角和定理列式整理即可; (2)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,再根据角平分线的定义可得∠PBC=∠ABC,∠PCE=∠ACE,然后整理即可得证; (3)根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠PBC+∠PCB,然后利用三角形的内角和定理列式整理即可得解. 【详解】解:(1); 理由:在△ABC中,∠ABC+∠ACB=180°-∠A, ∵点P为角平分线的交点, ∴,, ∴∠PBC+∠PCB=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A, 在△PBC中,∠P=180°-(90°-∠A)=90°+∠A; 故答案为:; (2). 理由:由三角形的外角性质得,∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC, ∵外角∠ACE的角平分线和内角∠ABC的角平分线交于点P, ∴∠PBC=∠ABC,∠PCE=∠ACE, ∴(∠A+∠ABC)=∠P+∠ABC, ∴∠P=∠A; (3); 证明:外角的角平分线和的角平分线交于点, 在中,. 故答案为:; 【点睛】本题考查的是三角形内角和定理,角平分线的定义和三角形外角的性质,熟记性质与概念是解题的关键,要注意整体思想的利用. 23、(1)每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方米 (2)最多建22个类摊位 【分析】(1)设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,由题意:用60平方米建类摊位的个 【解析】(1)每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方米 (2)最多建22个类摊位 【分析】(1)设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,由题意:用60平方米建类摊位的个数恰好是用同样面积建类摊位个数的,列出分式方程,然后解方程即可; (2)设类摊位的数量为个,则类摊位的数量为个,由题意:建造类摊位的数量不少于类摊位数量的3倍,列出一元一次不等式,然后解不等式即可. (1)解:设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,依题意,得:,解得:,经检验,是原分式方程的解,且符合题意,则.答:每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方米. (2)设类摊位的数量为个,则类摊位的数量为个,依题意,得:,解得:,因为取整数,所以的最大值为21、答:最多建22个类摊位. 【点睛】本题考查了分式方程的应用以及一元一次不等式的应用.解题的关键是:(1)找准等量关系,正确列出分式方程:(2)找出数量关系,正确列出一元一次不等式. 24、(1),;(2);(3)①28;②. 【分析】(1)方法1可采用两个正方形的面积和,方法2可以用大正方形的面积减去两个长方形的面积; (2)由(1)中两种方法表示的面积是相等的,从而得出结论; (3 【解析】(1),;(2);(3)①28;②. 【分析】(1)方法1可采用两个正方形的面积和,方法2可以用大正方形的面积减去两个长方形的面积; (2)由(1)中两种方法表示的面积是相等的,从而得出结论; (3)①由(2)的结论,代入计算即可; ②设,,则,,求即可. 【详解】解:(1)方法1,阴影部分的面积是两个正方形的面积和,即, 方法2,从边长为的大正方形面积减去两个长为,宽为的长方形面积,即, 故答案为:,; (2)在(1)两种方法表示面积相等可得, , 故答案为:; (3)①, , 又, ; ②设,,则,, , 答:的值为. 【点睛】本题考查完全平方公式的几何背景,解题的关键是掌握完全平方公式的结构特征是正确应用的前提,用不同方法表示同一部分的面积是得出关系式的关键. 25、(1);(2)①见解析;②∠APB=22.5° 【分析】(1)利用非负数的性质求解即可; (2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H 【解析】(1);(2)①见解析;②∠APB=22.5° 【分析】(1)利用非负数的性质求解即可; (2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H,可得等腰直角△BQF,证明△FQH≌△QBO(AAS),再证明FQ=FP即可解决问题. 【详解】解:(1)∵2a2+4ab+4b2+2a+1=0, ∴(a+2b)2+(a+1)2=0, ∵(a+2b)2≥0 ,(a+1)2≥0, ∴a+2b=0,a+1=0, ∴a=﹣1,b=, ∴A(﹣1,0),B(0,). (2)①证明:如图1中, ∵a+b=0, ∴a=﹣b, ∴OA=OB, 又∵∠AOB=90°, ∴∠BAO=∠ABO=45°, ∵D与P关于y轴对称, ∴BD=BP, ∴∠BDP=∠BPD, 设∠BDP=∠BPD=α, 则∠PBF=∠BAP+∠BPA=45°+α, ∵PE⊥DB, ∴∠BEF=90°, ∴∠F=90°﹣∠EBF, 又∠EBF=∠ABD=∠BAO﹣∠BDP=45°﹣α, ∴∠F=45°+α, ∴∠PBF=∠F, ∴PB=PF. ②解:如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H.可得等腰直角△BQF, ∵∠BOQ=∠BQF=∠FHQ=90°, ∴∠BQO+∠FQH=90°,∠FQH+∠QFH=90°, ∴∠BQO=∠QFH, ∵QB=QF, ∴△FQH≌△QBO(AAS), ∴HQ=OB=OA, ∴HO=AQ=PC, ∴PH=OC=OB=QH, ∴FQ=FP, 又∠BFQ=45°, ∴∠APB=22.5°. 【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 南昌市 数学 年级 上册 期末试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文