淄博市七年级下册数学期末试卷(含答案).doc
《淄博市七年级下册数学期末试卷(含答案).doc》由会员分享,可在线阅读,更多相关《淄博市七年级下册数学期末试卷(含答案).doc(19页珍藏版)》请在咨信网上搜索。
淄博市七年级下册数学期末试卷(含答案) 一、选择题 1.用白铁皮做罐头盒,每张铁皮可制盒身个或制盒底个,一个盒身与两个盒底配成一套罐头盒,现有张白铁皮,设用张制作盒身,张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是( ) A. B. C. D. 2.已知,则a2-b2-2b的值为 A.4 B.3 C.1 D.0 3.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE;④∠A+∠ADC=180°.其中,能推出AB∥DC的条件为( ) A.①④ B.②③ C.①③ D.①③④ 4.已知方程组的解也是方程3x-2y=0的解,则k的值是( ) A.k=-5 B.k=5 C.k=-10 D.k=10 5.如图,下列结论中不正确的是( ) A.若∠1=∠2,则AD∥BC B.若AE∥CD,则∠1+∠3=180° C.若∠2=∠C,则AE∥CD D.若AD∥BC,则∠1=∠B 6.某中学现有学生500人,计划一年后女生在校生增加,男生在校生增加,这样,在校学生将增加,设该校现有女生人数和男生,则列方程组为( ) A. B. C. D. 7.如图,在下列给出的条件下,不能判定AB∥DF的是( ) A.∠A+∠2=180° B.∠A=∠3 C.∠1=∠4 D.∠1=∠A 8.下列计算不正确的是( ) A. B. C. D.(a2)4=a8 9.下列等式由左边到右边的变形中,因式分解正确的是( ) A. B. C. D. 10.的计算结果的个位数字是( ) A.8 B.6 C.2 D.0 二、填空题 11.若x+3y-4=0,则2x•8y=_________. 12.若关于、的方程是二元一次方程,则_______ 13.已知关于x的不等式组无解,则a的取值范围是________. 14.若(3x+2y)2=(3x﹣2y)2+A,则代数式A为______. 15.已知某种植物花粉的直径为0.00033cm,将数据0.00033用科学记数法表示为 ________________. 16.已知a+b=5,ab=3,求: (1)a2b+ab2; (2)a2+b2. 17.计算:_____. 18.下列各数中:,,,,,是无理数的有______个. 19.已知关于的不等式的解集是,则关于的不等式的解集为_______. 20.已知是关于x,y的二元一次方程ax+y=4的一个解,则a的值为_____. 三、解答题 21.解二元一次方程组: (1) (2) 22.已知关于x、y的方程组与有相同的解,求a、b的值. 23.先化简,再求值:(2x+2)(2﹣2x)+5x(x+1)﹣(x﹣1)2,其中x=﹣2. 24.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点. (1)如图①,当点P在线段CE上时,请直写出∠NAP、∠HBP、∠APB之间的数量关系: ; (2)如图②,当点P在线段DE上时,(1)中的∠NAP、∠HBP、∠APB之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由. (3)如果点P在直线l2上且在C、D两点外侧运动时,其他条件不变,请直接写出∠NAP、∠HBP、∠APB之间的数量关系 . 25.如图(1),在平面直角坐标系中,点在轴负半轴上,直线轴于,点在直线上,点在轴上方. (1),,且满足,如图(2),过点作∥,点是直线上的点,在轴上是否存在点P,使得的面积是的面积的?若存在,求出P点坐标;若不存在,请说明理由. (2)如图(3),直线在y轴右侧,点是直线上动点,且点在轴下方,过点作∥交轴于,且、分别平分、,则的度数是否发生变化?若不变,求出的度数;若变化,请说明理由. 26.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=50°,求∠DAC及∠BOA的度数. 27.如图,中,,点分别在边的延长线上,连结平分.求证:. 28.解不等数组:,并在数轴上表示出它的解集. 【参考答案】***试卷处理标记,请不要删除 一、选择题 1.B 解析:B 【分析】 根据题意可知,本题中的相等关系是:(1)盒身的个数盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数,再列出方程组即可. 【详解】 解:设用x张制作盒身,y张制作盒底,根据题意得:. 故选:B. 【点睛】 此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”. 2.C 解析:C 【分析】 先将原式化简,然后将a−b=1整体代入求解. 【详解】 故答案选:C. 【点睛】 此题考查的是整体代入思想在代数求值中的应用. 3.D 解析:D 【详解】 解:①∵∠1=∠2,∴AB∥CD,故本选项正确; ②∵∠3=∠4,∴BC∥AD,故本选项错误; ③∵∠A=∠CDE,∴AB∥CD,故本选项正确; ④∵∠A+∠ADC=180°,∴AB∥CD,故本选项正确. 故选D. 4.A 解析:A 【分析】 根据方程组的解也是方程3x-2y=0的解,可得方程组 ,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值. 【详解】 ∵方程组的解也是方程3x-2y=0的解, ∴ , 解得, ; 把代入4x-3y+k=0得, -40+45+k=0, ∴k=-5. 故选A. 【点睛】 本题考查了解一元二次方程,根据题意得出方程组,解方程组求得x、y的值是解决问题的关键. 5.D 解析:D 【分析】 由平行线的性质和判定解答即可. 【详解】 解:A、∵∠1=∠2, ∴AD∥BC,原结论正确,故此选项不符合题意; B、∵AE∥CD, ∴∠1+∠3=180°,原结论正确,故此选项不符合题意; C、∵∠2=∠C, ∴AE∥CD,原结论正确,故此选项不符合题意; D、∵AD∥BC, ∴∠1=∠2,原结论不正确,故此选项符合题意; 故选:D. 【点睛】 本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解决问题的关键,注意它们之间的区别. 6.C 解析:C 【分析】 本题有两个相等关系:现有女生人数+现有男生人数=现有学生500;一年后女生在校生增加后的人数+男生在校生增加后的人数=现在校学生增加后的人数;据此即可列出方程组. 【详解】 解:设该校现有女生人数和男生,则列方程组为. 故选:C. 【点睛】 本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题关键. 7.D 解析:D 【分析】 根据平行线的判定定理对各选项进行逐一判断即可. 【详解】 A、∵∠A+∠2=180°,∴AB∥DF,故本选项错误; B、∵∠A=∠3,∴AB∥DF,故本选项错误; C、∵∠1=∠4,∴AB∥DF,故本选项错误; D、∵∠1=∠A,∴AC∥DE,故本选项正确. 故选:D. 【点睛】 点评:本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键. 8.B 解析:B 【分析】 根据同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 逐项判定即可 . 【详解】 解:∵,选项计算正确,不符合题意; ∵,选项计算不正确,符合题意; ,选项计算正确,不符合题意; ,选项计算正确,不符合题意; 故选:. 【点睛】 此题主要考查了同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 要熟练掌握 . 9.A 解析:A 【分析】 根据因式分解的意义,可得答案. 【详解】 解:A、属于因式分解,故本选项正确; B、因式分解不彻底,故B选项不符合题意; C、没把一个多项式转化成几个整式积的形式,故C不符合题意; D、是整式的乘法,故D不符合题意; 【点睛】 本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解. 10.D 解析:D 【分析】 先将2变形为,再根据平方差公式求出结果,根据规律得出答案即可. 【详解】 解: ,,,,,,,, 的个位是以指数1到4为一个周期,幂的个位数字重复出现, ,故与的个位数字相同即为1, ∴的个位数字为0, ∴的个位数字是0. 故选:D. 【点睛】 本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键. 二、填空题 11.16 【分析】 根据幂的运算公式变形,再代入x+3y=4即可求解. 【详解】 ∵x+3y-4=0 ∴x+3y=4 ∴2x•8y=2x•(23)y=2x+3y=24=16. 故答案为:16. 【点睛】 解析:16 【分析】 根据幂的运算公式变形,再代入x+3y=4即可求解. 【详解】 ∵x+3y-4=0 ∴x+3y=4 ∴2x•8y=2x•(23)y=2x+3y=24=16. 故答案为:16. 【点睛】 此题主要考查幂的运算,解题的关键是熟知幂的运算公式. 12.1 【解析】 根据题意得:, 解得:b=3或−3(舍去),a=−1, 则ab=−1. 故答案是:−1. 解析:1 【解析】 根据题意得:, 解得:b=3或−3(舍去),a=−1, 则ab=−1. 故答案是:−1. 13.a≥3 【详解】 解:解5-2x≥-1,得x≤3; 解x-a>0,得x>a, 因为不等式组无解,所以a≥3. 故答案为:a≥3. 【点睛】 本题考查不等式组的解集. 解析:a≥3 【详解】 解:解5-2x≥-1,得x≤3; 解x-a>0,得x>a, 因为不等式组无解,所以a≥3. 故答案为:a≥3. 【点睛】 本题考查不等式组的解集. 14.24xy 【解析】 ∵(3x+2y)2=(3x﹣2y)2+A, ∴(3x)2+2×3x×2y+(2y)2=(3x)2-2×3x×2y+(2y)2+A, 即9x2+12xy+4y2=9x2-12xy+ 解析:24xy 【解析】 ∵(3x+2y)2=(3x﹣2y)2+A, ∴(3x)2+2×3x×2y+(2y)2=(3x)2-2×3x×2y+(2y)2+A, 即9x2+12xy+4y2=9x2-12xy+4y2+A ∴A=24xy, 故答案为24xy. 【点睛】本题考查了完全平方公式,熟记完全平方公式是解题的关键. 完全平方公式:(a±b)2=a2±2ab+b2. 15.【分析】 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】 解析: 【分析】 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】 解:将数据0.00033用科学记数法表示为, 故答案为:. 【点睛】 本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 16.(1)15;(2)19. 【解析】 【分析】 (1)原式提取公因式,将已知等式代入计算即可求出值; (2)原式利用完全平方公式变形,将已知等式代入计算即可求出值; 【详解】 (1)a2b+ab2=a 解析:(1)15;(2)19. 【解析】 【分析】 (1)原式提取公因式,将已知等式代入计算即可求出值; (2)原式利用完全平方公式变形,将已知等式代入计算即可求出值; 【详解】 (1)a2b+ab2=ab(a+b)=3×5=15 (2)a2+b2=(a+b)2-2ab=52-2×3=19 【点睛】 此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键. 17.【分析】 先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算. 【详解】 解: 故答案为 【点睛】 此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 解析: 【分析】 先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算. 【详解】 解: 故答案为 【点睛】 此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 18.【分析】 根据无理数的定义判断即可. 【详解】 解:在,,,,五个数中,无理数有,,两个. 故答案为:2. 【点睛】 本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键. 解析: 【分析】 根据无理数的定义判断即可. 【详解】 解:在,,,,五个数中,无理数有,,两个. 故答案为:2. 【点睛】 本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键. 19.【分析】 根据已知不等式的解集,即可确定a,b之间得关系以及b的符号,从而解不等式. 【详解】 解:∵的解集是, ∴=1,a-b<0, ∴a=2b,b<0. 则不等式可以化为2bx>4b. ∵b< 解析: 【分析】 根据已知不等式的解集,即可确定a,b之间得关系以及b的符号,从而解不等式. 【详解】 解:∵的解集是, ∴=1,a-b<0, ∴a=2b,b<0. 则不等式可以化为2bx>4b. ∵b<0. ∴x<2. 即关于的不等式的解集为x<2. 【点睛】 本题考查了不等式的解法,正确确定b的符号是关键. 20.6 【分析】 把代入已知方程可得关于a的方程,解方程即得答案. 【详解】 解:把代入方程ax+y=4,得a-2=4,解得:a=6. 故答案为:6. 【点睛】 本题考查了二元一次方程的解的定义,属于基 解析:6 【分析】 把代入已知方程可得关于a的方程,解方程即得答案. 【详解】 解:把代入方程ax+y=4,得a-2=4,解得:a=6. 故答案为:6. 【点睛】 本题考查了二元一次方程的解的定义,属于基础题型,熟知二元一次方程的解的概念是关键. 三、解答题 21.(1) ;(2) 【分析】 (1)用代入法解得即可; (2)将方程组去括号整理后,用加减法解答即可; 【详解】 解:(1) 把方程①代入方程 解得 把代入到①,得 所以方程组的解为: (2) 原方程组化简,得 ①×2+②,得 解得 y=1 把y=1代入到②,得 解得x=3 所以方程组的解为: 【点睛】 本题考查了解二元一次方程组,解题的关键是熟记代入法和加减法解方程组的步骤,并根据方程选择合适方法解题. 22. 【分析】 因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可. 【详解】 和 解:联立①②得: 解得: 将代入③④得: 解得: 【点睛】 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 23.;-11 【分析】 根据整式的运算法则即可求出答案. 【详解】 解: 当时,原式. 【点睛】 本题考查整式化简求值,熟练运用运算法则是解题的关键. 24.(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB 【分析】 (1)过P点作PQ∥GH,根据平行线的性质即可求解; (2)过P点作PQ∥GH,根据平行线的性质即可求解; (3)根据平行线的性质和三角形外角的性质即可求解. 【详解】 解:(1)如图①,过P点作PQ∥GH, ∵MN∥GH, ∴MN∥PQ∥GH, ∴∠APQ=∠NAP,∠BPQ=∠HBP, ∵∠APB=∠APQ+∠BPQ, ∴∠APB=∠NAP+∠HBP, 故答案为:∠APB=∠NAP+∠HBP; (2)如图②,过P点作PQ∥GH, ∵MN∥GH, ∴MN∥PQ∥GH, ∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°, ∵∠APB=∠APQ+∠BPQ, ∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP); (3)如备用图, ∵MN∥GH, ∴∠PEN=∠HBP, ∵∠PEN=∠NAP+∠APB, ∴∠HBP=∠NAP+∠APB. 故答案为:∠HBP=∠NAP+∠APB. 【点睛】 此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键. 25.(1)存在,P点为或;(2)的度数不变,= 【分析】 (1)由非负数的性质可得a、b的方程组,解方程组即可求出a、b的值,于是可得点A、C坐标,进而可得S△ABC,若轴上存在点P(m,0),满足S△ABC=S△BPQ,可得关于m的方程,解方程即可求出m的值,从而可得点P坐标; (2)如图4,过点F作FH∥AC,设AC交y轴于点G,根据平行公理的推论可得AC∥FH∥DE,然后根据平行线的性质和角的和差可得∠AFD=∠GAF+∠1,由角平分线的性质和三角形的内角和定理可得2∠GAF+2∠1=90°,于是可得∠AFD=45°,从而可得结论. 【详解】 解:(1)∵满足, ∴,解得:, ∴,, ∴S△ABC=, ∵点是直线上的点,∴, 若轴上存在点P(m,0),满足S△ABC=S△BPQ, 则,解得:m=8或﹣4, 所以存在点P满足S△ABC=S△BPQ,且P点坐标为或; (2)如图4,过点F作FH∥AC,设AC交y轴于点G, ∵DE∥AC,∴AC∥FH∥DE, ∴∠GAF=∠AFH,∠HFD=∠1,∠AGO=∠GDE, ∴∠AFD=∠AFH+∠HFD=∠GAF+∠1, ∵、分别平分、, ∴∠CAB=2∠GAF,∠ODE=2∠1=∠AGO, ∵∠CAB+∠AGO=90°, ∴2∠GAF+2∠1=90°, ∴∠GAF+∠1=45°,即∠AFD=45°; ∴的度数不会发生变化,且∠AFD=45°. 【点睛】 本题考查了非负数的性质、二元一次方程组的解法、坐标系中三角形的面积、平行线的性质、角平分线的定义以及三角形的内角和定理等知识,综合性强、但难度不大,正确添加辅助线、熟练掌握上述是解题的关键. 26.∠DAC=40°,∠BOA=115° 【解析】 试题分析:在Rt△ACD中,根据两锐角互余得出∠DAC度数;△ABC中由内角和定理得出∠ABC度数,再根据AE,BF是角平分线可得∠BAO、∠ABO,最后在△ABO中根据内角和定理可得答案. 解:∵AD是BC边上的高, ∴∠ADC=90°, 又∵∠C=50°, ∴在△ACD中,∠DAC=90°-∠C=40°, ∵∠BAC=60°,∠C=50°, ∴在△ABC中,∠ABC=180°-∠BAC-∠C=70°, 又∵AE、BF分别是∠BAC 和∠ABC的平分线, ∴∠BAO=∠BAC=30°,∠ABO=∠ABC=35°, ∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°. 27.证明见详解. 【分析】 根据,,平分,可得,,容易得,即可得. 【详解】 ∵,, ∴, 又∵平分, ∴ ∴ ∴. 【点睛】 本题考查了对顶角的性质,角平分线的定义和平行线的证明,熟悉相关性质是解题的关键. 28.解集为1≤x﹤4,数轴表示见解析 【分析】 分别解两个不等式的解集,它们的公共部分即为不等式组的解集,然后把解集表示在数轴上即可. 【详解】 解不等式①得:x≥1, 解不等式②得:x﹤4, ∴不等式组的解集为1≤x﹤4, 在数轴上表示为: . 【点睛】 本题考查一元一次不等式组和在数轴上表示不等式的解集,正确求出每个不等式的解集是解答的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 淄博市 年级 下册 数学 期末试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文