人教版七年级数学下册期末几何压轴题试题(带答案)-(一).doc
《人教版七年级数学下册期末几何压轴题试题(带答案)-(一).doc》由会员分享,可在线阅读,更多相关《人教版七年级数学下册期末几何压轴题试题(带答案)-(一).doc(46页珍藏版)》请在咨信网上搜索。
一、解答题 1.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16. (1)求点C的坐标. (2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴). (3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由. 2.已知点C在射线OA上. (1)如图①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数; (2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD与∠BO′E′的关系(用含α的代数式表示) (3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系. 3.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN. (1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时, ①试判断PM与MN的位置关系,并说明理由; ②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线) (2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理) 4.如图,直线,点是、之间(不在直线,上)的一个动点. (1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由; (2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值; (3)如图3,若点是下方一点,平分, 平分,已知,求的度数. 5.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC. (1)在动点A运动的过程中, (填“是”或“否”)存在某一时刻,使得AD平分∠EAC? (2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由; (3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系. 6.如图1,已知直线m∥n,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB. (1)如图1,若∠OPQ=82°,求∠OPA的度数; (2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数; (3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由. 7.定义:如果,那么称b为n的布谷数,记为. 例如:因为,所以, 因为, 所以. (1)根据布谷数的定义填空:g(2)=________________,g(32)=___________________. (2)布谷数有如下运算性质: 若m,n为正整数,则,. 根据运算性质解答下列各题: ①已知,求和的值; ②已知.求和的值. 8.观察下列各式,并用所得出的规律解决问题: (1),,,…… ,,,…… 由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位. (2)已知,,则_____;______. (3),,,…… 小数点的变化规律是_______________________. (4)已知,,则______. 9.给定一个十进制下的自然数,对于每个数位上的数,求出它除以的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数的“模二数”,记为.如.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定:与相加得;与相加得与相加得,并向左边一位进.如的“模二数”相加的运算过程如下图所示. 根据以上材料,解决下列问题: (1)的值为______ ,的值为_ (2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如,因为,所以,即与满足“模二相加不变”. ①判断这三个数中哪些与“模二相加不变”,并说明理由; ②与“模二相加不变”的两位数有______个 10.阅读材料:求的值. 解:设①,将等式①的两边同乘以2, 得②, 用②-①得, 即. 即. 请仿照此法计算: (1)请直接填写的值为______; (2)求值; (3)请直接写出的值. 11.对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,=3. (1)仿照以上方法计算:=______;=_____. (2)若,写出满足题意的x的整数值______. 如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1. (4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____. 12.我们知道,任意一个正整数n都可以进行这样的分解:(p,q是正整数,且),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的完美分解.并规定:. 例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F(18)=. (1)F(13)= ,F(24)= ; (2)如果一个两位正整数t,其个位数字是a,十位数字为,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”; (3)在(2)所得“和谐数”中,求F(t)的最大值. 13.如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,点C的坐标为(﹣3,2). (1)直接写出点E的坐标 ; (2)在四边形ABCD中,点P从点O出发,沿OB→BC→CD移动,若点P的速度为每秒1个单位长度,运动时间为t秒,请解决以下问题; ①当t为多少秒时,点P的横坐标与纵坐标互为相反数; ②当t为多少秒时,三角形PEA的面积为2,求此时P的坐标 14.已知,定点,分别在直线,上,在平行线,之间有一动点. (1)如图1所示时,试问,,满足怎样的数量关系?并说明理由. (2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明 (3)当满足,且,分别平分和, ①若,则__________°. ②猜想与的数量关系.(直接写出结论) 15.如图,平面直角坐标系中,点的坐标是,点在轴的正半轴上,的面积等于18. (1)求点的坐标; (2)如图,点从点出发,沿轴正方向运动,点运动至点停止,同时点从点出发,沿轴正方向运动,点运动至点停止,点、点的速度都为每秒1个单位,设运动时间为秒,的面积为,求用含的式子表示,并直接写出的取值范围; (3)在(2)的条件下,过点作,连接并延长交于,连接交于点,若,求值及点的坐标. 16.使方程(组)与不等式(组)同时成立的末知数的值称为此方程(组)和不等式(组)的“理想解”. 例:已知方程2x﹣3=1与不等式x+3>0,当x=2时,2x﹣3=2×2﹣3=1,x+3=2+3=5>0同时成立,则称x=2是方程2x﹣3=1与不等式x+3>0的“理想解”. (1)已知①,②2(x+3)<4,③<3,试判断方程2x+3=1的解是否是它们中某个不等式的“理想解”,写出过程; (2)若是方程x﹣2y=4与不等式的“理想解”,求x0+2y0的取值范围. 17.在平面直角坐标系中,已知长方形,点,. (1)如图,有一动点在第二象限的角平分线上,若,求的度数; (2)若把长方形向上平移,得到长方形. ①在运动过程中,求的面积与的面积之间的数量关系; ②若,求的面积与的面积之比. 18.如图,在平面直角坐标系中,点,,将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为,,连接交y轴于点C,交x轴于点D. (1)线段可以由线段AB经过怎样的平移得到?并写出,的坐标; (2)求四边形的面积; (3)P为y轴上的一动点(不与点C重合),请探究与的数量关系,给出结论并说明理由. 19.我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题: (1)求每头牛、每只羊各值多少两银子? (2)若某商人准备用20两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能. 20.历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示.例如f(x)=x2+3x-5,把x=某数时多项式的值用f(某数)来表示.例如x=-1时多项式x2+3x-5的值记为f(-1)=(-1)2+3×(-1)-5=-7. (1)已知g(x)=-2x2-3x+1,分别求出g(-1)和g(-2); (2)已知h(x)=ax3+2x2-ax-6,当h()=a,求a的值; (3)已知f(x)=--2(a,b为常数),当k无论为何值,总有f(1)=0,求a,b的值. 21.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题: (1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案; (3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费. 22.在平面直角坐标系中,点、在坐标轴上,其中、满足. (1)求、两点的坐标; (2)将线段平移到,点的对应点为,如图1所示,若三角形的面积为,求点的坐标; (3)平移线段到,若点、也在坐标轴上,如图2所示.为线段上的一动点(不与、重合),连接、平分,.求证:. 23.新定义,若关于,的二元一次方程组①的解是,关于,的二元一次方程组②的解是,且满足,,则称方程组②的解是方程组①的模糊解.关于,的二元一次方程组的解是方程组的模糊解,则的取值范围是________. 24.七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连. (1)分数5,10,15,20中,每人得分不可能是________分. (2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数. ①问(1)班有多少人得满分? ②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高? 25.学校组织名同学和名教师参加校外学习交流活动现打算选租大、小两种客车,大客车载客量为人/辆,小客车载客量为人/辆 (1)学校准备租用辆客车,有几种租车方案? (2)在(1)的条件下,若大客车租金为元/辆,小客车租金为元/辆,哪种租车方案最省钱? (3)学校临时增加名学生和名教师参加活动,每辆大客车有2名教师带队,每辆小客车至少有名教师带队.同学先坐满大客车,再依次坐满小客车,最后一辆小客车至少要有人,请你帮助设计租车方案 26.如图,在平面直角坐标系中,轴,轴,且,动点从点出发,以每秒的速度,沿路线向点运动;动点从点出发,以每秒的速度,沿路线向点运动.若两点同时出发,其中一点到达终点时,运动停止. (Ⅰ)直接写出三个点的坐标; (Ⅱ)设两点运动的时间为秒,用含的式子表示运动过程中三角形的面积; (Ⅲ)当三角形的面积的范围小于16时,求运动的时间的范围. 27.某加工厂用52500元购进A、B两种原料共40吨,其中原料A每吨1500元,原料B每吨1000元.由于原料容易变质,该加工厂需尽快将这批原料运往有保质条件的仓库储存.经市场调查获得以下信息: ①将原料运往仓库有公路运输与铁路运输两种方式可供选择,其中公路全程120千米,铁路全程150千米; ②两种运输方式的运输单价不同(单价:每吨每千米所收的运输费); ③公路运输时,每吨每千米还需加收1元的燃油附加费; ④运输还需支付原料装卸费:公路运输时,每吨装卸费100元;铁路运输时,每吨装卸费220元. (1)加工厂购进A、B两种原料各多少吨? (2)由于每种运输方式的运输能力有限,都无法单独承担这批原料的运输任务.加工厂为了尽快将这批原料运往仓库,决定将A原料选一种方式运输,B原料用另一种方式运输,哪种方案运输总花费较少?请说明理由. 28.在平面直角坐标系中,点,,的坐标分别为,,,且,满足方程为二元一次方程. (1)求,的坐标. (2)若点为轴正半轴上的一个动点. ①如图1,当时,与的平分线交于点,求的度数; ②如图2,连接,交轴于点.若成立.设动点的坐标为,求的取值范围. 29.如图①,在平直角坐标系中,△ABO的三个顶点为A(a,b),B(﹣a,3b),O(0,0),且满足|b﹣2|=0,线段AB与y轴交于点C. (1)求出A,B两点的坐标; (2)求出△ABO的面积; (3)如图②,将线段AB平移至B点的对应点落在x轴的正半轴上时,此时A点的对应点为,记△的面积为S,若24<S<32,求点的横坐标的取值范围. 30.已知,在平面直角坐标系中,AB⊥x轴于点B,点A满足,平移线段AB使点A与原点重合,点B的对应点为点C. (1)则a= ,b= ,点C坐标为 ; (2)如图1,点D(m,n)在线段BC上,求m,n满足的关系式; (3)如图2,E是线段OB上一动点,以OB为边作∠BOG=∠AOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值. 【参考答案】***试卷处理标记,请不要删除 一、解答题 1.(1) C(5,﹣4);(2)90°;(3)见解析. 【详解】 分析:(1)利用非负数的和为零,各项分别为零,求出a,b即可; (2)用同角的余角相等和角平分线的意义即可; (3)利用角平分线的意义和互余两角的关系简单计算证明即可. 详解:(1)∵(a﹣3)2+|b+4|=0, ∴a﹣3=0,b+4=0, ∴a=3,b=﹣4, ∴A(3,0),B(0,﹣4), ∴OA=3,OB=4, ∵S四边形AOBC=16. ∴0.5(OA+BC)×OB=16, ∴0.5(3+BC)×4=16, ∴BC=5, ∵C是第四象限一点,CB⊥y轴, ∴C(5,﹣4); (2)如图, 延长CA,∵AF是∠CAE的角平分线, ∴∠CAF=0.5∠CAE, ∵∠CAE=∠OAG, ∴∠CAF=0.5∠OAG, ∵AD⊥AC, ∴∠DAO+∠OAG=∠PAD+∠PAG=90°, ∵∠AOD=90°, ∴∠DAO+∠ADO=90°, ∴∠ADO=∠OAG, ∴∠CAF=0.5∠ADO, ∵DP是∠ODA的角平分线, ∴∠ADO=2∠ADP, ∴∠CAF=∠ADP, ∵∠CAF=∠PAG, ∴∠PAG=∠ADP, ∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90° 即:∠APD=90° (3)不变,∠ANM=45°理由:如图, ∵∠AOD=90°, ∴∠ADO+∠DAO=90°, ∵DM⊥AD, ∴∠ADO+∠BDM=90°, ∴∠DAO=∠BDM, ∵NA是∠OAD的平分线, ∴∠DAN=0.5∠DAO=0.5∠BDM, ∵CB⊥y轴, ∴∠BDM+∠BMD=90°, ∴∠DAN=0.5(90°﹣∠BMD), ∵MN是∠BMD的角平分线, ∴∠DMN=0.5∠BMD, ∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45° 在△DAM中,∠ADM=90°, ∴∠DAM+∠DMA=90°, 在△AMN中, ∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)] =180°﹣(45°+90°)=45°, ∴D点在运动过程中,∠N的大小不变,求出其值为45° 点睛:此题是四边形综合题,主要考查了非负数的性质,四边形面积的计算方法,角平分线的意义,解本题的关键是用整体的思想解决问题,也是本题的难点. 2.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′ 【分析】 (1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数; (2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系; (3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′. 【详解】 解:(1)∵CD∥OE, ∴∠AOE=∠OCD=120°, ∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°; (2)∠OCD+∠BO′E′=360°-α. 证明:如图②,过O点作OF∥CD, ∵CD∥O′E′, ∴OF∥O′E′, ∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′, ∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α, ∴∠OCD+∠BO′E′=360°-α; (3)∠AOB=∠BO′E′. 证明:∵∠CPO′=90°, ∴PO′⊥CP, ∵PO′⊥OB, ∴CP∥OB, ∴∠PCO+∠AOB=180°, ∴2∠PCO=360°-2∠AOB, ∵CP是∠OCD的平分线, ∴∠OCD=2∠PCO=360°-2∠AOB, ∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB, ∴360°-2∠AOB+∠BO′E′=360°-∠AOB, ∴∠AOB=∠BO′E′. 【点睛】 此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键. 3.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°. 【分析】 (1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN; ②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解; (2)分三种情况讨论,利用平行线的性质即可解决. 【详解】 解:(1)①PM⊥MN,理由见解析: ∵AB//CD, ∴∠APM=∠PMQ, ∵∠APM+∠QMN=90°, ∴∠PMQ +∠QMN=90°, ∴PM⊥MN; ②过点N作NH∥CD, ∵AB//CD, ∴AB// NH∥CD, ∴∠QMN=∠MNH,∠EPA=∠ENH, ∵PA平分∠EPM, ∴∠EPA=∠ MPA, ∵∠APM+∠QMN=90°, ∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°, ∴∠MNQ +∠MNH +∠MNH=90°, ∵∠MNQ=20°, ∴∠MNH=35°, ∴∠EPA=∠ENH=∠MNQ +∠MNH=55°, ∴∠EPB=180°-55°=125°, ∴∠EPB的度数为125°; (2)当点M,N分别在射线QC,QF上时,如图: ∵PM⊥MN,AB//CD, ∴∠PMQ +∠QMN=90°,∠APM=∠PMQ, ∴∠APM +∠QMN=90°; 当点M,N分别在射线QC,线段PQ上时,如图: ∵PM⊥MN,AB//CD, ∴∠PMN=90°,∠APM=∠PMQ, ∴∠PMQ -∠QMN=90°, ∴∠APM -∠QMN=90°; 当点M,N分别在射线QD,QF上时,如图: ∵PM⊥MN,AB//CD, ∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°, ∴∠APM+90°-∠QMN=180°, ∴∠APM -∠QMN=90°; 综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°. 【点睛】 本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键. 4.(1)见解析;(2);(3)75° 【分析】 (1)根据平行线的性质、余角和补角的性质即可求解. (2)根据平行线的性质、对顶角的性质和平角的定义解答即可. (3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可. 【详解】 解:(1)∠C=∠1+∠2, 证明:过C作l∥MN,如下图所示, ∵l∥MN, ∴∠4=∠2(两直线平行,内错角相等), ∵l∥MN,PQ∥MN, ∴l∥PQ, ∴∠3=∠1(两直线平行,内错角相等), ∴∠3+∠4=∠1+∠2, ∴∠C=∠1+∠2; (2)∵∠BDF=∠GDF, ∵∠BDF=∠PDC, ∴∠GDF=∠PDC, ∵∠PDC+∠CDG+∠GDF=180°, ∴∠CDG+2∠PDC=180°, ∴∠PDC=90°-∠CDG, 由(1)可得,∠PDC+∠CEM=∠C=90°, ∴∠AEN=∠CEM, ∴, (3)设BD交MN于J. ∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°, ∴∠PBD=2∠PBC=50°,∠CAM=∠MAD, ∵PQ∥MN, ∴∠BJA=∠PBD=50°, ∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM, 由(1)可得,∠ACB=∠PBC+∠CAM, ∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°. 【点睛】 本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系. 5.(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD. 【分析】 (1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC; (2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B; (3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD. 【详解】 解:(1)是,理由如下: 要使AD平分∠EAC, 则要求∠EAD=∠CAD, 由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD, 则当∠ACB=∠B时,有AD平分∠EAC; 故答案为:是; (2)∠B=∠ACB,理由如下: ∵AD平分∠EAC, ∴∠EAD=∠CAD, ∵AD∥BC, ∴∠B=∠EAD,∠ACB=∠CAD, ∴∠B=∠ACB. (3)∵AC⊥BC, ∴∠ACB=90°, ∵∠EBF=50°, ∴∠BAC=40°, ∵AD∥BC, ∴AD⊥AC. 【点睛】 此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键. 6.(1)49°,(2)44°,(3)∠OPQ=∠ORQ 【分析】 (1)根据∠OPA=∠QPB.可求出∠OPA的度数; (2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题; (3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ. 【详解】 解:(1)∵∠OPA=∠QPB,∠OPQ=82°, ∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°, (2)作PC∥m, ∵m∥n, ∴m∥PC∥n, ∴∠AOP=∠OPC=43°, ∠BQP=∠QPC=49°, ∴∠OPQ=∠OPC+∠QPC=43°+49°=92°, ∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°, (3)∠OPQ=∠ORQ. 理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC, ∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角, ∴∠AOP=∠DOR,∠BQP=∠RQC, ∴∠OPQ=∠ORQ. 【点睛】 本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的. 7.(1)1;5;(2)①3.807,0.807;②;. 【分析】 (1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案; (2)①根据布谷数的运算性质, g(14)=g(2×7)=g(2)+g(7),,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为,,再代入求解. 【详解】 解:(1)g(2)=g(21)=1, g(32)=g(25)=5; 故答案为1,32; (2)①g(14)=g(2×7)=g(2)+g(7), ∵g(7)=2.807,g(2)=1, ∴g(14)=3.807; g(4)=g(22)=2, ∴=g(7)-g(4)=2.807-2=0.807; 故答案为3.807,0.807; ②∵. ∴; . 【点睛】 本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键. 8.(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01 【分析】 (1)观察已知等式,得到一般性规律,写出即可; (2)利用得出的规律计算即可得到结果; (3)归纳总结得到规律,写出即可; (4)利用得出的规律计算即可得到结果. 【详解】 解:(1),,,…… ,,,…… 由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位. 故答案为:两;右;一; (2)已知,,则;; 故答案为:12.25;0.3873; (3),,,…… 小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位; (4)∵,, ∴, ∴, ∴y=-0.01. 【点睛】 此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键. 9.(1)1011,1101;(2)①12,65,97,见解析,②38 【分析】 (1) 根据“模二数”的定义计算即可; (2) ①根据“模二数”和模二相加不变”的定义,分别计算和12+23,65+23,97+23的值,即可得出答案 ②设两位数的十位数字为a,个位数字为b,根据a、b的奇偶性和“模二数”和模二相加不变”的定义进行讨论,从而得出与“模二相加不变”的两位数的个数 【详解】 解: (1) , 故答案为: ①, , 与满足“模二相加不变”. ,, , 与不满足“模二相加不变”. , , , 与满足“模二相加不变” ②当此两位数小于77时,设两位数的十位数字为a,个位数字为b,; 当a为偶数,b为偶数时, ∴ ∴与满足“模二相加不变”有12个(28、48、68不符合) 当a为偶数,b为奇数时, ∴ ∴与不满足“模二相加不变”.但27、47、67、29、49、69符合共6个 当a为奇数,b为奇数时, ∴ ∴与不满足“模二相加不变”.但17、37、57、19、39、59也不符合 当a为奇数,b为偶数时, ∴ ∴与满足“模二相加不变”有16个,(18、38、58不符合) 当此两位数大于等于77时,符合共有4个 综上所述共有12+6+16+4=38 故答案为:38 【点睛】 本题考查新定义,数字的变化类,认真观察、仔细思考,分类讨论的数学思想是解决这类问题的方法.能够理解定义是解题的关键. 10.(1)15;(2);(3). 【分析】 (1)先计算乘方,即可求出答案; (2)根据题目中的运算法则进行计算,即可求出答案; (3)根据题目中的运算法则进行计算,即可求出答案; 【详解】 解:(1); 故答案为:15; (2)设①,把等式①两边同时乘以5,得 ②, 由②①,得:, ∴, ∴; (3)设①, 把等式①乘以10,得: ②, 把①+②,得:, ∴, ∴, ∴ . 【点睛】 本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键. 11.(1)2;5;(2)1,2,3;(3)3;(4)255 【分析】 (1)先估算和的大小,再由并新定义可得结果; (2)根据定义可知x<4,可得满足题意的x的整数值; (3)根据定义对120进行连续求根整数,可得3次之后结果为1; (4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案. 【详解】 解:(1)∵22=4, 62=36,52=25, ∴5<<6, ∴[]=[2]=2,[]=5, 故答案为2,5; (2)∵12=1,22=4,且[]=1, ∴x=1,2,3, 故答案为1,2,3; (3)第一次:[]=10, 第二次:[]=3, 第三次:[]=1, 故答案为3; (4)最大的正整数是255, 理由是:∵[]=15,[]=3,[]=1, ∴对255只需进行3次操作后变为1, ∵[]=16,[]=4,[]=2,[]=1, ∴对256只需进行4次操作后变为1, ∴只需进行3次操作后变为1的所有正整数中,最大的是255, 故答案为255. 【点睛】 本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力. 12.(1),(2)所以和谐数为15,26,37,48,59;(3)F(t)的最大值是. 【分析】 (1)根据题意,按照新定义的法则计算即可. (2)根据新定义的”和谐数”定义,将数用a,b表示列出式子解出即可. (3)根据(2)中计算的结果求出最大即可. 【详解】 解:(1)F(13)=,F(24)=; (2)原两位数可表示为 新两位数可表示为 ∴ ∴ ∴ ∴ ∴ (且b为正整数 ) ∴b=2,a=5; b=3,a=6, b=4,a=7, b=5,a=8 b=6,a=9 所以和谐数为15,26,37,48,59 (3)所有“和谐数”中,F(t)的最大值是. 【点睛】 本题为新定义的题型,关键在于读懂题意,按照规定解题. 13.(1)(-2,0);(2)①4秒;②(0,)或(-3,) 【分析】 (1)根据BC=AE=3,OA=1,推出OE=2,可得结论. (2)①判断出PB=CD,即可得出结论; ②根据△PEA的面积以及AE求出点P到AE的距离,结合点P的路线可得坐标. 【详解】 解:(1)∵C(-3,2),A(1,0), ∴BC=3,OA=1, ∵BC=AE=3, ∴OE=AE-AO=2, ∴E(-2,0); (2)①∵点C的坐标为(-3,2) ∴BC=3,CD=2, ∵点P的横坐标与纵坐标互为相反数; ∴点P在线段BC上, ∴PB=CD=2, 即t=(2+2)÷1=4; ∴当t=4秒时,点P的横坐标与纵坐标互为相反数; ②∵△PEA的面积为2,A(1,0),E(-2,0), ∴AE=3, 设点P到AE的距离为h ∴, ∴h=, 即点P到AE的距离为, ∴点P的坐标为(0,)或(-3,). 【点睛】 本题考查坐标与图形变化-平移,三角形的面积等知识,解本题的关键是由线段和部分点的坐标,得出其它点的坐标. 14.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF 【分析】 (1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,,,满足数量关系为:; (2)当点在的右侧时,,,满足数量关系为:; (3)①若当点在的左侧时,;当点在的右侧时,可求得; ②结合①可得,由,得出;可得,由,得出. 【详解】 解:(1)如图1,过点作, , , , , , ; (2)如图2,当点在的右侧时,,,满足数量关系为:; 过点作, , , , , , ; (3)①如图3,若当点在的左侧时, , , ,分别平分和, ,, ; 如图4,当点在的右侧时, , , ; 故答案为:或30; ②由①可知:, ; , . 综合以上可得与的数量关系为:或. 【点睛】 本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键. 15.(1);(2)();(3)的值为4,点的坐标是. 【分析】 (1)根据△AOB的面积可求得OA的长,即可求得点A的坐标; (2)由题意可分别得,由三角形面积公式即可得结果,由点Q只在线段OB上运动,从而可得t的取值范围; (3)利用割补方法,由则可求得t的值;连接OE,由可求得OF的长,从而求得点F的坐标. 【详解】 (1)∵B(-6,0), ∴OB=6, ∵, ∴, ∴OA=6 , ∴. (2)∵,, ∴, ∴() (3)∵,, ∴, ∴, 解得,则, ∴, 连接,如图 ∵, ∴ ∴ ∴点坐标为 综上所述:的值为4,点的坐标是. 【点睛】 本题考查了代数式,三角形面积,用到了割补方法,也是本题的关键和难点. 16.(1)2x+3=1的解是不等式<3的理想解,过程见解析;(2)2<x0+2y0<8 【分析】 (1)解方程2x+3=1的解为x=﹣1,分别代入三个不等式检验即可得到答- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 下册 期末 几何 压轴 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文