分享
分销 收藏 举报 申诉 / 42
播放页_导航下方通栏广告

类型西安交通大学附属中学八年级上册压轴题数学模拟试卷及答案.doc

  • 上传人:天****
  • 文档编号:4915006
  • 上传时间:2024-10-20
  • 格式:DOC
  • 页数:42
  • 大小:2.33MB
  • 下载积分:12 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    西安交通大学 附属中学 年级 上册 压轴 数学模拟 试卷 答案
    资源描述:
    西安交通大学附属中学八年级上册压轴题数学模拟试卷及答案 一、压轴题 1.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE. ①请直接写出∠AEB的度数为_____; ②试猜想线段AD与线段BE有怎样的数量关系,并证明; (2)拓展探究:图2, △ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E在同-直线上, CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数线段CM、AE、BE之间的数量关系,并说明理由. 2.如图,在平面直角坐标系中,,,,点、在轴上且关于轴对称. (1)求点的坐标; (2)动点以每秒2个单位长度的速度从点出发沿轴正方向向终点运动,设运动时间为秒,点到直线的距离的长为,求与的关系式; (3)在(2)的条件下,当点到的距离为时,连接,作的平分线分别交、于点、,求的长. 3.已知,在平面直角坐标系中,,,C为AB的中点,P是线段AB上一动点,D是线段OA上一点,且,于E. (1)求的度数; (2)当点P运动时,PE的值是否变化?若变化,说明理由;若不变,请求PE的值. (3)若,求点D的坐标. 4.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线,,上,,且每两条平行线之间的距离为1,求AB的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法: (1)小明说:我只需要过B、C向作垂线,就能利用全等三角形的知识求出AB的长. (2)小林说:“我们可以改变的形状.如图2,,,且每两条平行线之间的距离为1,求AB的长.” (3)小谢说:“我们除了改变的形状,还能改变平行线之间的距离.如图3,等边三角形ABC三个顶点分别落在三条平行线,,上,且与之间的距离为1,与之间的距离为2,求AB的长、” 请你根据3位同学的提示,分别求出三种情况下AB的长度. 5.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC是等边三角形,点D是BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线于点E.试探究AD与DE的数量关系. 操作发现:(1)小明同学过点D作DF∥AC交AB于F,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明. 类比探究:(2)如图2,当点D是线段BC上任意一点(除B、C外),其他条件不变,试猜想AD与DE之间的数量关系,并证明你的结论. 拓展应用:(3)当点D在线段BC的延长线上,且满足CD=BC,在图3中补全图形,直接判断△ADE的形状(不要求证明). 6.(1)填空 ①把一张长方形的纸片按如图①所示的方式折叠,,为折痕,折叠后的点落在或的延长线上,那么的度数是________; ②把一张长方形的纸片按如图②所示的方式折叠,点与点重合,,为折痕,折叠后的点落在或的延长线上,那么的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,,为折痕,折叠后的点落在或的延长线上左侧,且,求的度数; ②把一张长方形的纸片按如图④所示的方式折叠,点与点重合,,为折痕,折叠后的点落在或的延长线右侧,且,求的度数. (3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,,为折痕,设,,,求,,之间的数量关系. 7.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究. (初步思考) 我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究. (深入探究) 第一种情况:当∠B是直角时,△ABC≌△DEF. (1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF. 第二种情况:当∠B是钝角时,△ABC≌△DEF. (2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC≌△DEF. 第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等. (3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角.请你用直尺在图③中作出△DEF,使△DEF和△ABC不全等,并作简要说明. 8.探究:如图①,在△ABC中,∠ACB=90°,CD⊥AB于点D,若∠B=30°,则∠ACD的度数是   度; 拓展:如图②,∠MCN=90°,射线CP在∠MCN的内部,点A、B分别在CM、CN上,分别过点A、B作AD⊥CP、BE⊥CP,垂足分别为D、E,若∠CBE=70°,求∠CAD的度数; 应用:如图③,点A、B分别在∠MCN的边CM、CN上,射线CP在∠MCN的内部,点D、E在射线CP上,连接AD、BE,若∠ADP=∠BEP=60°,则∠CAD+∠CBE+∠ACB=   度. 9.在△ABC中,∠BAC=45°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=135°,CN=CM,如图①. (1)求证:∠ACN=∠AMC; (2)记△ANC得面积为5,记△ABC得面积为5.求证:; (3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程) 10.(1)问题发现. 如图1,和均为等边三角形,点、、均在同一直线上,连接. ①求证:. ②求的度数. ③线段、之间的数量关系为__________. (2)拓展探究. 如图2,和均为等腰直角三角形,,点、、在同一直线上,为中边上的高,连接. ①请判断的度数为____________. ②线段、、之间的数量关系为________.(直接写出结论,不需证明) 11.如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为轴和轴建立平面直角坐标系,点A(0,a),C(b,0)满足. (1)a= ;b= ;直角三角形AOC的面积为 . (2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发以每秒1个单位长度的速度向点A匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由. (3)在(2)的条件下,若∠DOC=∠DCO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOD,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180). 12.已知ABC,P 是平面内任意一点(A、B、C、P 中任意三点都不在同一直线上).连接 PB、PC,设∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y°. (1)如图,当点 P 在ABC 内时, ①若 y=70,s=10,t=20,则 x= ; ②探究 s、t、x、y 之间的数量关系,并证明你得到的结论. (2)当点 P 在ABC 外时,直接写出 s、t、x、y 之间所有可能的数量关系,并画出相应的图形. 13.如图,在中,,,点为内一点,且. (1)求证:; (2)若,为延长线上的一点,且. ①求的度数. ②若点在上,且,请判断、的数量关系,并说明理由. ③若点为直线上一点,且为等腰,直接写出的度数. 14.在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题: (1)非等边的等腰三角形有________条对称轴,非正方形的长方形有________条对称轴,等边三角形有___________条对称轴; (2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1-2和图1-3都可以看作由图1-1修改得到的,仿照类似的修改方式,请你在图1-4和图1-5中,分别修改图1-2和图1-3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形; (3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形; (4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴. 15.如图,在中,,,点D在边BC上运动(点D不与点重合),连接AD,作,DE交边AC于点E. (1)当时, , (2)当DC等于多少时,,请说明理由; (3)在点D的运动过程中,的形状可以是等腰三角形吗?若可以,请求出的度数;若不可以,请说明理由. 16.小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形中,点在上,点在的延长线上,且,试确定线段与的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答: (1)取特殊情况,探索讨论:当点为的中点时,如图(2),确定线段与的大小关系,请你写出结论:_____(填“”,“”或“”),并说明理由. (2)特例启发,解答题目: 解:题目中,与的大小关系是:_____(填“”,“”或“”).理由如下: 如图(3),过点作EF∥BC,交于点.(请你将剩余的解答过程完成) (3)拓展结论,设计新题:在等边三角形中,点在直线上,点在直线上,且,若△的边长为,,求的长(请你画出图形,并直接写出结果). 17.(阅读材料): (1)在中,若,由“三角形内角和为180°”得. (2)在中,若,由“三角形内角和为180°”得. (解决问题): 如图①,在平面直角坐标系中,点C是x轴负半轴上的一个动点.已知轴,交y轴于点E,连接CE,CF是∠ECO的角平分线,交AB于点F,交y轴于点D.过E点作EM平分∠CEB,交CF于点M. (1)试判断EM与CF的位置关系,并说明理由; (2)如图②,过E点作PE⊥CE,交CF于点P.求证:∠EPC=∠EDP; (3)在(2)的基础上,作EN平分∠AEP,交OC于点N,如图③.请问随着C点的运动,∠NEM的度数是否发生变化?若不变,求出其值:若变化,请说明理由. 18.如图,在中,为的中点,,.动点从点出发,沿方向以的速度向点运动;同时动点从点出发,沿方向以的速度向点运动,运动时间是. (1)在运动过程中,当点位于线段的垂直平分线上时,求出的值; (2)在运动过程中,当时,求出的值; (3)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由. 19.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F. (1)若点E的位置如图1所示. ①若∠ABE=60°,∠CDE=80°,则∠F= °; ②探究∠F与∠BED的数量关系并证明你的结论; (2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是 . (3)若点E的位置如图3所示,∠CDE 为锐角,且,设∠F=α,则α的取值范围为 . 20.阅读并填空: 如图,是等腰三角形,,是边延长线上的一点,在边上且联接交于,如果,那么,为什么? 解:过点作交于 所以(两直线平行,同位角相等) (________) 在与中 所以,(________) 所以(________) 因为(已知) 所以(________) 所以(等量代换) 所以(________) 所以 【参考答案】***试卷处理标记,请不要删除 一、压轴题 1.(1)①60°;②AD=BE.证明见解析;(2)∠AEB=90°;AE=2CM+BE;理由见解析. 【解析】 【分析】 (1)①由条件△ACB和△DCE均为等边三角形,易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.②由△ACD≌△BCE,可得AD=BE; (2)首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°;根据DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM. 【详解】 (1)①∵∠ACB=∠DCE,∠DCB=∠DCB, ∴∠ACD=∠BCE, 在△ACD和△BCE中, , ∴△ACD≌△BCE, ∴AD=BE,∠CEB=∠ADC=180°−∠CDE=120°, ∴∠AEB=∠CEB−∠CED=60°; ②AD=BE. 证明:∵△ACD≌△BCE, ∴AD=BE. (2)∠AEB=90°;AE=2CM+BE;理由如下: ∵△ACB和△DCE均为等腰直角三角形,∠ACB =∠DCE= 90°, ∴AC = BC, CD = CE, ∠ACB =∠DCB =∠DCE-∠DCB, 即∠ACD = ∠BCE, ∴△ACD≌△BCE, ∴AD = BE,∠BEC = ∠ADC=135°. ∴∠AEB =∠BEC-∠CED =135°- 45°= 90°. 在等腰直角△DCE中,CM为斜边DE上的高, ∴CM =DM= ME,∴DE = 2CM. ∴AE = DE+AD=2CM+BE. 【点睛】 本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题. 2.(1)C(4,0);(2);(3). 【解析】 【分析】 (1)根据对称的性质知为等边三角形,利用直角三角形中30度角的性质即可求得答案; (2)利用面积法可求得,再利用坐标系中点的特征即可求得答案; (3)利用(2)的结论求得,利用角平分线的性质证得,求得,利用面积法求得,再利用直角三角形中30度角的性质即可求得答案. 【详解】 (1)∵点、关于轴对称, ∴, ∴, ∵, ∴为等边三角形, ∴, ∴, ∴点C的坐标为:; (2)连接, ∵, ∴, ∵, ∴, ∵, ∴, ∵, ∴, 即:; (3)∵点到的距离为, ∴, ∴, ∴, 延长交于点,过点作轴于点,连接、, ∵为的角平分线,为等边三角形, ∴,, ∵,, ∴, ∴, 设, 在中,, ∴, ∵, ∴, ∴, ∴, ∴, ∵,, ∴, ∵, ∴, 在中,,, ∴, ∴,, ∴, ∴. 【点睛】 本题是三角形综合题,涉及的知识有:含30度直角三角形的性质,全等三角形的判定与性质,外角性质,角平分线的性质,等边三角形的判定和性质,坐标与图形性质,熟练掌握性质及定理、灵活运用面积法求线段的长是解本题的关键. 3.(1)45°;(2)PE的值不变,PE=4,理由见详解;(3)D(,0). 【解析】 【分析】 (1)根据,,得△AOB为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB的度数; (2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC⊥AB,再证明△POC≌△DPE,根据全等三角形的性质得到OC=PE,即可得到答案; (3)证明△POB≌△DPA,得到PA=OB=,DA=PB,进而得OD的值,即可求出点D的坐标. 【详解】 (1),, ∴OA=OB=, ∵∠AOB=90°, ∴△AOB为等腰直角三角形, ∴∠OAB=45°; (2)PE的值不变,理由如下: ∵△AOB为等腰直角三角形,C为AB的中点, ∴∠AOC=∠BOC=45°,OC⊥AB, ∵PO=PD, ∴∠POD=∠PDO, ∵D是线段OA上一点, ∴点P在线段BC上, ∵∠POD=45°+∠POC,∠PDO=45°+∠DPE, ∴∠POC=∠DPE, 在△POC和△DPE中, , ∴△POC≅△DPE(AAS), ∴OC=PE, ∵OC=AB=××=4, ∴PE=4; (3)∵OP=PD, ∴∠POD=∠PDO=(180°−45°)÷2=67.5°, ∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°, ∴∠APD=∠BOP, 在△POB和△DPA中, ∴△POB≌△DPA(AAS), ∴PA=OB=,DA=PB, ∴DA=PB=×-=8-, ∴OD=OA−DA=-(8-)=, ∴点D的坐标为(,0). 【点睛】 本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键. 4.(1);(2);(3) 【解析】 【分析】 (1)分别过点B,C向l1作垂线,交l1于M,N两点,证明△ABM≌△CAN,得到AM=CN,AN=BM,即可得出AB; (2)分别过点B,C向l1作垂线,交l1于点P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,证明△AMB≌△CAN,得到CN=AM,再通过△PBM和△QCN算出PM和NQ的值,得到AP,最后在△APB中,利用勾股定理算出AB的长; (3)在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交l3于点P,过A作l3的垂线,交l3于点Q,证明△BCN≌△CAM,得到CN=AM,在△BPN和△AQM中利用勾股定理算出NP和AM,从而得到PC,结合BP算出BC的长,即为AB. 【详解】 解:(1)如图,分别过点B,C向l1作垂线,交l1于M,N两点, 由题意可得:∠BAC=90°, ∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°, ∴∠MAB=∠NCA, 在△ABM和△CAN中, , ∴△ABM≌△CAN(AAS), ∴AM=CN=2,AN=BM=1, ∴AB=; (2)分别过点B,C向l1作垂线,交l1于P,Q两点, 在l1上取M,N使∠AMB=∠CNA=120°, ∵∠BAC=120°, ∴∠MAB+∠NAC=60°, ∵∠ABM+∠MAB=60°, ∴∠ABM=∠NAC, 在△AMB和△CNA中, , ∴△AMB≌△CNA(AAS), ∴CN=AM, ∵∠AMB=∠ANC=120°, ∴∠PMB=∠QNC=60°, ∴PM=BM,NQ=NC, ∵PB=1,CQ=2, 设PM=a,NQ=b, ∴,, 解得:,, ∴CN=AM==, ∴AB===; (3)如图,在l3上找M和N,使得∠BNC=∠AMC=60°, 过B作l3的垂线,交于点P,过A作l3的垂线,交于点Q, ∵△ABC是等边三角形, ∴BC=AC,∠ACB=60°, ∴∠BCN+∠ACM=120°, ∵∠BCN+∠NBC=120°, ∴∠NBC=∠ACM, 在△BCN和△CAM中, , ∴△BCN≌△CAM(AAS), ∴CN=AM,BN=CM, ∵∠PBN=90°-60°=30°,BP=2, ∴BN=2NP, 在△BPN中,, 即, 解得:NP=, ∵∠AMC=60°,AQ=3, ∴∠MAQ=30°, ∴AM=2QM, 在△AQM中,, 即, 解得:QM=, ∴AM==CN, ∴PC=CN-NP=AM-NP=, 在△BPC中, BP2+CP2=BC2, 即BC=, ∴AB=BC=. 【点睛】 本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解. 5.(1)AD=DE,见解析;(2)AD=DE,见解析;(3)见解析,△ADE是等边三角形, 【解析】 【分析】 (1)根据题意,通过平行线的性质及等边三角形的性质证明即可得解; (2)根据题意,通过平行线的性质及等边三角形的性质证明即可得解; (3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可. 【详解】 (1)如下图,数量关系:AD=DE. 证明:∵是等边三角形 ∴AB=BC, ∵DF∥AC ∴,∠BDF=∠BCA ∴ ∴是等边三角形, ∴DF=BD ∵点D是BC的中点 ∴BD=CD ∴DF=CD ∵CE是等边的外角平分线 ∴ ∵是等边三角形,点D是BC的中点 ∴AD⊥BC ∴ ∵ ∴ 在与中 ∴ ∴AD=DE; (2)结论:AD=DE. 证明:如下图,过点D作DF∥AC,交AB于F ∵是等边三角形 ∴AB=BC, ∵DF∥AC ∴ ∴ ∴是等边三角形, ∴BF=BD ∴AF=DC ∵CE是等边的外角平分线 ∴ ∵∠ADC是的外角 ∴ ∵ ∴∠FAD=∠CDE 在与中 ∴ ∴AD=DE; (3)如下图,是等边三角形. 证明:∵ ∴ ∵CE平分 ∴CE垂直平分AD ∴AE=DE ∵ ∴是等边三角形. 【点睛】 本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键. 6.,;,;,. 【解析】 【分析】 (1)①如图①知,得 可求出解. ②由图②知得可求出解. (2)①由图③折叠知,可推出,即可求出解. ②由图④中折叠知,可推出,即可求出解. (3)如图⑤-1、⑤-2中分别由折叠可知,、,即可求得 、. 【详解】 解:(1)①如图①中, ,, , 故答案为. ②如图②中,, , 故答案为. (2)①如图③中由折叠可知, , , , , ; ②如图④中根据折叠可知, , , , , , ; (3)如图⑤-1中,由折叠可知,, ; 如图⑤-2中,由折叠可知,, . 【点睛】 本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目. 7.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF和△ABC不全等. 【解析】 【分析】 (1)根据直角三角形全等的方法“HL”证明; (2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等; (3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等; (4)根据三种情况结论,∠B不小于∠A即可. 【详解】 (1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL. (2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足. ∵∠ABC、∠DEF都是钝角 ∴G、H分别在AB、DE的延长线上. ∵CG⊥AG,FH⊥DH, ∴∠CGA=∠FHD=90°. ∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF, ∴∠CBG=∠FEH. 在△BCG和△EFH中, ∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF, ∴△BCG≌△EFH. ∴CG=FH. 又∵AC=DF.∴Rt△ACG≌△DFH. ∴∠A=∠D. 在△ABC和△DEF中, ∵∠ABC=∠DEF,∠A=∠D,AC=DF, ∴△ABC≌△DEF. (3)如图②,△DEF就是所求作的三角形,△DEF和△ABC不全等. 【点睛】 本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细. 8.探究:30;(2)拓展:20°;(3)应用:120 【解析】 【分析】 (1)利用直角三角形的性质依次求出∠A,∠ACD即可; (2)利用直角三角形的性质直接计算得出即可; (3)利用三角形的外角的性质得出结论,直接转化即可得出结论. 【详解】 (1)在△ABC中,∠ACB=90°,∠B=30°, ∴∠A=60°, ∵CD⊥AB, ∴∠ADC=90°, ∴∠ACD=90°﹣∠A=30°; 故答案为:30, (2)∵BE⊥CP, ∴∠BEC=90°, ∵∠CBE=70°, ∴∠BCE=90°﹣∠CBE=20°, ∵∠ACB=90°, ∴∠ACD=90°﹣∠BCE=70°, ∵AD⊥CP, ∴∠CAD=90°﹣∠ACD=20°; (3)∵∠ADP是△ACD的外角, ∴∠ADP=∠ACD+∠CAD=60°, 同理,∠BEP=∠BCE+∠CBE=60°, ∴∠CAD+∠CBE+∠ACB=∠CAD+∠CBE+∠ACD+∠BCE=(∠CAD+∠ACD)+(∠CBE+∠BCE)=120°, 故答案为120. 【点睛】 此题是三角形的综合题,主要考查了直角三角形的性质,三角形的外角的性质,垂直的定义,解本题的关键是充分利用直角三角形的性质:两锐角互余,是一道比较简单的综合题. 9.(1)证明见解析;(2)证明见解析;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,证明见解析. 【解析】 【分析】 (1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM; (2)过点N作NE⊥AC于E,由“AAS”可证△NEC≌△CDM,可得NE=CD,由三角形面积公式可求解; (3)过点N作NE⊥AC于E,由“SAS”可证△NEA≌△CDP,可得AN=CP. 【详解】 (1)∵∠BAC=45°, ∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM. ∵∠NCM=135°, ∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC; (2)过点N作NE⊥AC于E, ∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN, ∴△NEC≌△CDM(AAS), ∴NE=CD,CE=DM; ∵S1AC•NE,S2AB•CD, ∴; (3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立, 理由如下:过点N作NE⊥AC于E, 由(2)可得NE=CD,CE=DM. ∵AC=2BD,BP=BM,CE=DM, ∴AC﹣CE=BD+BD﹣DM, ∴AE=BD+BP=DP. ∵NE=CD,∠NEA=∠CDP=90°,AE=DP, ∴△NEA≌△CDP(SAS), ∴AN=PC. 【点睛】 本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键. 10.(1)①详见解析;②60°;③;(2)①90°;② 【解析】 【分析】 (1)易证∠ACD=∠BCE,即可求证△ACD≌△BCE,根据全等三角形对应边相等可求得AD=BE,根据全等三角形对应角相等即可求得∠AEB的大小; (2)易证△ACD≌△BCE,可得∠ADC=∠BEC,进而可以求得∠AEB=90°,即可求得DM=ME=CM,即可解题. 【详解】 解:(1)①证明:∵和均为等边三角形, ∴,, 又∵, ∴, ∴. ②∵为等边三角形, ∴. ∵点、、在同一直线上, ∴, 又∵, ∴, ∴. ③ , ∴. 故填:; (2)①∵和均为等腰直角三角形, ∴,, 又∵, ∴, ∴, 在和中, , ∴, ∴. ∵点、、在同一直线上, ∴, ∴. ②∵, ∴. ∵,, ∴. 又∵, ∴, ∴. 故填:①90°;②. 【点睛】 本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD≌△BCE是解题的关键. 11.(1)6;8;24;(2)存在时,使得△ODP与△ODQ的面积相等;(3)∠GOD+∠ACE=∠OHC,见解析 【解析】 【分析】 (1)利用非负性即可求出a,b即可得出结论,即可求出△ABC的面积; (2)先表示出OQ,OP,利用那个面积相等,建立方程求解即可得出结论; (3)先判断出∠OAC=∠AOD,进而判断出OG∥AC,即可判断出∠FHC=∠ACE,同理∠FHO=∠GOD,即可得出结论. 【详解】 解:(1) 解:(1)∵, ∴a-6=0,b-8=0, ∴a=6,b=8, ∴A(0,6),C(8,0); ∴S△ABC=6×8÷2=24, 故答案为(0,6),(8,0); 6;8;24 (2) ∵ 由时, ∴存在时,使得△ODP与△ODQ的面积相等 (3) )∴2∠GOA+∠ACE=∠OHC,理由如下: ∵x轴⊥y轴, ∴∠AOC=∠DOC+∠AOD=90° ∴∠OAC+∠ACO=90° 又∵∠DOC=∠DCO ∴∠OAC=∠AOD ∵y轴平分∠GOD ∴∠GOA=∠AOD ∴∠GOA=∠OAC ∴OG∥AC, 如图,过点H作HF∥OG交x轴于F, ∴HF∥AC ∴∠FHC=∠ACE 同理∠FHO=∠GOD, ∵OG∥FH, ∴∠GOD=∠FHO, ∴∠GOD+∠ACE=∠FHO+∠FHC 即∠GOD+∠ACE=∠OHC, ∴2∠GOA+∠ACE=∠OHC. ∴∠GOD+∠ACE=∠OHC. 【点睛】 此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键. 12.(1)①100;②x=y+s+t;(2)见详解. 【解析】 【分析】 (1)①利用三角形的内角和定理即可解决问题; ②结论:x=y+s+t.利用三角形内角和定理即可证明; (2)分6种情形分别求解即可解决问题. 【详解】 解:(1)①∵∠BAC=70°, ∴∠ABC+∠ACB=110°, ∵∠PBA=10°,∠PCA=20°, ∴∠PBC+∠PCB=80°, ∴∠BPC=100°, ∴x=100, 故答案为:100. ②结论:x=y+s+t. 理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°, ∴∠A+∠PBA+∠PCA=∠BPC, ∴x=y+s+t. (2)s、t、x、y之间所有可能的数量关系: 如图1:s+x=t+y; 如图2:s+y=t+x; 如图3:y=x+s+t; 如图4:x+y+s+t=360°; 如图5:t=s+x+y; 如图6:s=t+x+y; 【点睛】 本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是学会用分类讨论的思想思考问题. 13.(1)证明见解析;(2)①;②,理由见解析;③ 7.5°或15°或82.5°或150° 【解析】 【分析】 (1)利用线段的垂直平分线的性质即可证明; (2)①利用SSS证得△ADC≌△BDC,可求得∠ACD=∠BCD=45°,∠CAD=∠CBD=15°,即可解题; ②连接MC,易证△MCD为等边三角形,即可证明△BDC≌△EMC即可解题; ③分EN=EC、EN=CN、CE=CN三种情形讨论,画出图形,利用等腰三角形的性质即可求解. 【详解】 (1)∵CB=CA,DB=DA, ∴CD垂直平分线段AB, ∴CD⊥AB; (2)①在△ADC和△BDC中, , ∴△ADC≌△BDC(SSS), ∴∠ACD=∠BCD=∠BCA=45°,∠CAD=∠CBD=15°, ∴∠BDC=180-45°-15°=120°; ②结论:ME=BD, 理由:连接MC, ∵,, ∴∠CAB=∠CBA=45°, ∵∠CAD=∠CBD=15°, ∴∠DBA=∠DAB=30°, ∴∠BDE=30°+30°=60°, 由①得∠BDC=120°, ∴∠CDE=60°, ∵DC=DM,∠CDE=60°, ∴△MCD为等边三角形, ∴CM=CD, ∵EC=CA=CB,∠DMC=60°, ∴∠E=∠CAD=∠CBD=15°,∠EMC=120°, 在△BDC和△EMC中, , ∴△BDC≌△EMC(AAS), ∴ME=BD; ③当EN=EC时,∠=7.5°或∠ ==82.5°; 当EN=CN时,∠ ==150°; 当CE=CN时,点N与点A重合,∠CNE=15°, 所以∠CNE的度数为7.5°或15°或82.5°或150°. 【点睛】 本题考查了全等三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题. 14.(1)1,2,3;(2)答案见解析;(3)答案见解析;(4)答案见解析. 【解析】 【分析】 (1)根据等腰三角形的性质、矩形的性质以及等边三角形的性质进行判断即可; (2)中图1-2和图1-3都可以看作由图1-1修改得到的,在图1-4和图1-5中,分别仿照类似的修改方式进行画图即可; (3)长方形具有两条对称轴,在长方形的右侧补出与左侧一样的图形,即可构造出一个恰好有2条对称轴的凸六边形; (4)在等边三角形的基础上加以修改,即可得到恰好有3条对称轴的凸六边形. 【详解】 解:(1)非等边的等腰三角形有1条对称轴,非正方形的长方形有2条对称轴,等边三角形有3条对称轴, 故答案为1,2,3; (2)恰好有1条对称轴的凸五边形如图中所示. (3)恰好有2条对称轴的凸六边形如图所示. (4)恰好有3条对称轴的凸六边形如图所示. 15.(1)30,100;(2),见解析;(3)可以,或 【解析】 【分析】 (1)根据平角的定义,可求出 ∠EDC 的度数,根据三角形内和定理,即可求出 ∠DEC ; (2)当 AB=DC 时,利用 AAS 可证明 ΔABD≅ΔDCE ,即可得出 AB=DC=3 ; (3)假设 ΔADE 是等腰三角形,分为三种情况讨论:①当 DA=DE 时,求出 ∠DAE=∠DEA=70° ,求出 ∠BAC ,根据三角形的内角和定理求出 ∠BAD ,根据三角形的内角和定理求出 ∠BDA 即可;②当 AD=AE 时, ∠ADE=∠AED=40° ,根据 ∠AED>∠C ,得出此时不符合;③当 EA=ED 时,求出 ∠DAC ,求出 ∠BAD ,根据三角形的内角和定理求出 ∠ADB . 【详解】 (1)在 △BAD 中
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:西安交通大学附属中学八年级上册压轴题数学模拟试卷及答案.doc
    链接地址:https://www.zixin.com.cn/doc/4915006.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork