七年级下册盐城数学期末试卷试卷(word版含答案).doc
《七年级下册盐城数学期末试卷试卷(word版含答案).doc》由会员分享,可在线阅读,更多相关《七年级下册盐城数学期末试卷试卷(word版含答案).doc(24页珍藏版)》请在咨信网上搜索。
七年级下册盐城数学期末试卷试卷(word版含答案) 一、选择题 1.实数4的算术平方根是() A. B.2 C. D.16 2.下列生活现象中,属于平移的是( ). A.钟摆的摆动 B.拉开抽屉 C.足球在草地上滚动 D.投影片的文字经投影转换到屏幕上 3.已知点P的坐标为,则点P在第( )象限. A.一 B.二 C.三 D.四 4.下列命题是假命题的是( ) A.对顶角相等 B.两直线平行,同旁内角相等 C.过直线外一点有且只有一条直线与已知直线平行 D.同位角相等,两直线平行 5.如图,,点为上方一点,分别为的角平分线,若,则的度数为( ) A. B. C. D. 6.下列语句中正确的是( ) A.-9的平方根是-3 B.9的平方根是3 C.9的立方根是 D.9的算术平方根是3 7.如图,直线AB∥CD,BE平分∠ABD,若∠DBE=20°,∠DEB=80°,求∠CDE的度数是( ) A.50° B.60° C.70° D.80° 8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动.其行走路线如图所示,第1次移动到,第2次移动到,…,第n次移动到,则的面积是( ) A. B. C. D. 二、填空题 9.已知,则a+b为_____. 10.点A(-2,1)关于x轴对称的点的坐标是____________________. 11.如图,已知AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,∠BCE=40°,则∠ADB=_____. 12.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有 _______个. 13.如图,将长方形沿折叠,使点C落在边上的点F处,若,则___º. 14.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______. 15.在平面直角坐标系中,点A(1,4),C(1,﹣2),E(a,a),D(4﹣b,2﹣b),其中a+b=2,若DE=BC,∠ACB=90°,则点B的坐标是___. 16.如图,一个点在第一象限及轴、轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第42秒时质点所在位置的坐标是______. 三、解答题 17.(1)计算: (2)解方程: 18.已知m+n=2,mn=-15,求下列各式的值. (1); (2). 19.完成下面的证明. 如图,AB∥CD,∠B+∠D=180°,求证:BE∥DF. 分析:要证BE∥DF,只需证∠1=∠D. 证明:∵AB∥CD(已知) ∴∠B+∠1=180°( ) ∵∠B+∠D=180°(已知) ∴∠1=∠D( ) ∴BE∥DF( ) 20.在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及△ABC的顶点都在格点上. (1)将△ ABC先向下平移2个单位长度,再向右平移5个单位长度得到△ A1B1C1,画出△ A1B1C1. (2)求△ A1B1C1的面积. 21.已知是的整数部分,是的小数部分,求的平方根. 二十二、解答题 22.如图用两个边长为cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为,且面积为cm2?请说明理由. 二十三、解答题 23.如图1,已知直线m∥n,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB. (1)如图1,若∠OPQ=82°,求∠OPA的度数; (2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数; (3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由. 24.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A射线自顺时针旋转至便立即回转,灯B射线自顺时针旋转至便立即回转,两灯不停交叉照射巡视,若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足.假定这一带长江两岸河堤是平行的,即,且 (1)求a、b的值; (2)若灯B射线先转动45秒,灯A射线才开始转动,当灯B射线第一次到达时运动停止,问A灯转动几秒,两灯的光束互相平行? (3)如图,两灯同时转动,在灯A射线到达之前.若射出的光束交于点C,过C作交于点D,则在转动过程中,与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围. 25.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC的面积记为S2.则S1=S2. 解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 . 拓展延伸: (1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为 . (2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 . 26.如图,在中,与的角平分线交于点. (1)若,则 ; (2)若,则 ; (3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则 . 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据算术平方根的定义,求一个非负数a的算术平方根,也就是求一个非负数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0. 【详解】 解:∵22=4, ∴4的算术平方根是2. 故选B. 【点睛】 本题主要考查了算术平方根的定义,解题的关键在于能够掌握一个非负数的算术平方根具有非负性. 2.B 【分析】 根据平移的定义,对选项进行分析,排除错误答案. 【详解】 A选项:为旋转,故A错误; C选项:滚动,故C错误; D选项:缩放,投影,故D错误. 只有B选项为平移. 故选:B. 【点睛】 解析:B 【分析】 根据平移的定义,对选项进行分析,排除错误答案. 【详解】 A选项:为旋转,故A错误; C选项:滚动,故C错误; D选项:缩放,投影,故D错误. 只有B选项为平移. 故选:B. 【点睛】 本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状大小和方向,注意平移是沿着一条直线方向移动,熟练运用平移的性质是解答本题的关键. 3.B 【分析】 直接利用第二象限内的点:横坐标小于0,纵坐标大于0,即可得出答案. 【详解】 解:∵点P的坐标为P(-2,4), ∴点P在第二象限. 故选:B. 【点睛】 此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键. 4.B 【分析】 真命题就是正确的命题,条件和结果相矛盾的命题是假命题. 【详解】 解:A. 对顶角相等是真命题,故A不符合题意; B. 两直线平行,同旁内角互补,故B是假命题,符合题意; C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意; D. 同位角相等,两直线平行,是真命题,故D不符合题意, 故选:B. 【点睛】 本题考查真假命题,是基础考点,掌握相关知识是解题关键. 5.A 【分析】 过G作GMAB,根据平行线的性质可得∠2=∠5,∠6=∠4,进而可得∠FGC=∠2+∠4,再利用平行线的性质进行等量代换可得3∠1=210°,求出∠1的度数,然后可得答案. 【详解】 解:过G作GMAB, ∴∠2=∠5, ∵ABCD, ∴MGCD, ∴∠6=∠4, ∴∠FGC=∠5+∠6=∠2+∠4, ∵FG、CG分别为∠EFG,∠ECD的角平分线, ∴∠1=∠2=∠EFG,∠3=∠4=∠ECD, ∵∠E+2∠G=210°, ∴∠E+∠1+∠2+∠ECD=210°, ∵ABCD, ∴∠ENB=∠ECD, ∴∠E+∠1+∠2+∠ENB=210°, ∵∠1=∠E+∠ENB, ∴∠1+∠1+∠2=210°, ∴3∠1=210°, ∴∠1=70°, ∴∠EFG=2×70°=140°. 故选:A. 【点睛】 此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内错角相等. 6.D 【分析】 根据平方根、立方根、算术平方根的定义逐一进行判断即可. 【详解】 A. 负数没有平方根,故A选项错误; B. 9的平方根是±3,故B选项错误; C. 9的立方根是,故C选项错误; D. 9的算术平方根是3,正确, 故选D. 【点睛】 本题考查了平方根、立方根、算术平方根等知识,熟练掌握相关概念以及求解方法是解题的关键. 7.B 【分析】 延长,交于点,根据角平分线的定义以及已知条件可得,由三角形的外角性质可求,最后由平行线的性质即可求解. 【详解】 延长,交于点, BE平分∠ABD,, , ,∠DEB=80°, , , , 故选B. 【点睛】 本题考查了角平分线的定义,平行线的性质,三角形的外角性质,掌握以上知识是解题的关键. 8.C 【分析】 每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式. 【详 解析:C 【分析】 每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式. 【详解】 解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…, 每四次一循环,每个循环,点向x轴的正方向前进2cm, ∴OA4n=2n, ∵2021=505×4+1, ∴点A2021在x轴上,且OA2021=505×2+1=1011, ∴△OA2A2021的面积=×1×1011=(cm2). 故选:C. 【点睛】 本题主要考查了点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半. 二、填空题 9.-6 【解析】 试题分析:∵,∴,解得=1,b=-7,∴.故应填为:-6. 考点:非负数的性质:算术平方根;非负数的性质:绝对值. 点评:本题要求掌握非负数的性质:几个非负数的和为0时,这几个非负数 解析:-6 【解析】 试题分析:∵,∴,解得=1,b=-7,∴.故应填为:-6. 考点:非负数的性质:算术平方根;非负数的性质:绝对值. 点评:本题要求掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0. 10.(-2,-1) 【分析】 根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】 解:点(-2,1)关于x轴对称的点的坐标是(-2,-1), 故答案为:(-2,-1). 【点睛】 本 解析:(-2,-1) 【分析】 根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】 解:点(-2,1)关于x轴对称的点的坐标是(-2,-1), 故答案为:(-2,-1). 【点睛】 本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数. 11.100° 【分析】 根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB 解析:100° 【分析】 根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB=∠BCE+∠ACE+∠CAD,从而求得∠ADB的度数. 【详解】 解:∵AD是ABC的角平分线,∠BAC=60°. ∴∠BAD=∠CAD=∠BAC=30°, ∵CE是ABC的高, ∴∠CEA=90°. ∵∠CEA+∠BAC+∠ACE=180°. ∴∠ACE=30°. ∵∠ADB=∠BCE+∠ACE+∠CAD,∠BCE=40°. ∴∠ADB=40°+30°+30°=100°. 故答案为:100°. 【点睛】 本题考查三角形的内角和、角的平分线、三角形的一个外角等于和它不相邻的内角的和,关键是根据具体目中的信息,灵活变化,求出相应的问题的答案. 12.4 【分析】 根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个 【详解】 ∵射线DF⊥直线c ∴∠1+∠2=90°,∠1 解析:4 【分析】 根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个 【详解】 ∵射线DF⊥直线c ∴∠1+∠2=90°,∠1+∠3=90° 即与∠1互余的角有∠2,∠3 又∵a∥b ∴∠3=∠5,∠2=∠4 ∴∠1互余的角有∠4,∠5 ∴与∠1互余的角有4个 故答案为:4 【点睛】 本题考查了互余的定义,如果两个角的和等于(直角),就说这两个角互为余角,简称互余,即其中每一个角是另一个角的余角;本题还考查了平行线的性质定理,两直线平行,同位角相等. 13.23 【分析】 根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC的度数,即可得到∠EDC. 【详解】 解:∵△DFE是由△DCE折叠得到的, ∴∠DEC=∠FED 解析:23 【分析】 根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC的度数,即可得到∠EDC. 【详解】 解:∵△DFE是由△DCE折叠得到的, ∴∠DEC=∠FED, 又∵∠EFB=44°,∠B=90°, ∴∠BEF=46°, ∴∠DEC=(180°-46°)=67°, ∴∠EDC=90°-∠DEC=23°, 故答案为:23. 【点睛】 本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键. 14.或 【详解】 【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得. 【详解】M{3,2x+1,4x-1}==2x+1 解析:或 【详解】 【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得. 【详解】M{3,2x+1,4x-1}==2x+1, ∵M{3,2x+1,4x-1}=min{2,-x+3,5x}, ∴有如下三种情况: ①2x+1=2,x=,此时min{2,-x+3,5x}= min{2,,}=2,成立; ②2x+1=-x+3,x=,此时min{2,-x+3,5x}= min{2,,}=2,不成立; ③2x+1=5x,x=,此时min{2,-x+3,5x}= min{2,,}=,成立, ∴x=或, 故答案为或. 【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解. 15.或 【分析】 根据,求得的坐标,进而求得的长,根据DE=BC,∠ACB=90°,分类讨论即可确定的坐标. 【详解】 , 的纵坐标相等, 则到轴的距离相等,即轴 则 DE=BC, A(1,4 解析:或 【分析】 根据,求得的坐标,进而求得的长,根据DE=BC,∠ACB=90°,分类讨论即可确定的坐标. 【详解】 , 的纵坐标相等, 则到轴的距离相等,即轴 则 DE=BC, A(1,4),C(1,﹣2), 的横坐标相等,则到轴的距离相等,即轴 则轴, 当在的左侧时,, 当在的右侧时,, 的坐标为或. 故答案为:或. 【点睛】 本题考查了坐标与图形,点的平移,平行线的性质与判定,点到坐标轴的距离,根据题意求得的长是解题的关键. 16.(6,6) 【分析】 根据质点移动的各点的坐标与时间的关系,找出规律即可解答. 【详解】 由题意可知质点移动的速度是1个单位长度╱秒, 到达(1,0)时用了3秒,到达(2,0)时用了4秒, 从(2, 解析:(6,6) 【分析】 根据质点移动的各点的坐标与时间的关系,找出规律即可解答. 【详解】 由题意可知质点移动的速度是1个单位长度╱秒, 到达(1,0)时用了3秒,到达(2,0)时用了4秒, 从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒, 从(0,3)到(3,0)有六个单位长度,则到(3,0)时用了9+6=15秒, 以此类推到(4,0)用了16秒,到(0,4)用了16+8=24秒,到(0,5)用了25秒,到(5,0)用了25+10=35秒, 故第42秒时质点到达的位置为(6,6), 故答案为:(6,6). 【点睛】 本题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第42秒时质点所在位置的坐标是解题关键. 三、解答题 17.(1);(2)x= 【分析】 (1)先算乘方、绝对值和开方,再算乘法,最后算加减; (2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可. 【详解】 解:(1) = = 解析:(1);(2)x= 【分析】 (1)先算乘方、绝对值和开方,再算乘法,最后算加减; (2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可. 【详解】 解:(1) = = =; (2), 去分母,可得:3(x+1)-6=2(2-3x), 去括号,可得:3x+3-6=4-6x, 移项,可得:3x+6x=4-3+6, 合并同类项,可得:9x=7, 系数化为1,可得:x=. 【点睛】 此题主要考查了实数的混合运算,解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1. 18.(1)-11;(2)68 【分析】 (1)直接利用完全平方公式将原式变形进而得出答案; (2)直接利用完全平方公式将原式变形进而得出答案. 【详解】 解:(1) = = = =-11; (2) = 解析:(1)-11;(2)68 【分析】 (1)直接利用完全平方公式将原式变形进而得出答案; (2)直接利用完全平方公式将原式变形进而得出答案. 【详解】 解:(1) = = = =-11; (2) = = = =68 【点睛】 此题主要考查了完全平方公式,正确应用完全平方公式是解题关键. 19.两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行 【分析】 要证BE∥DF,只需证∠1=∠D,由AB∥CD可知∠B+∠1=180°,又有∠B+∠D=180°,由此即可证得. 【详解】 解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行 【分析】 要证BE∥DF,只需证∠1=∠D,由AB∥CD可知∠B+∠1=180°,又有∠B+∠D=180°,由此即可证得. 【详解】 证明:∵AB∥CD(已知) ∴∠B+∠1=180°(两直线平行,同旁内角互补) ∵∠B+∠D=180°(已知) ∴∠1=∠D(同角的补角相等), ∴BE∥DF(同位角相等,两直线平行) 故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行. 【点睛】 本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 20.(1)见解析;(2) 【分析】 (1)直接利用平移的性质得出对应点位置进而得出答案; (2)依据割补法进行计算,即可得到三角形ABC的面积. 【详解】 解:(1)如图所示,三角形A1B1C1即为所求 解析:(1)见解析;(2) 【分析】 (1)直接利用平移的性质得出对应点位置进而得出答案; (2)依据割补法进行计算,即可得到三角形ABC的面积. 【详解】 解:(1)如图所示,三角形A1B1C1即为所求; (2)如图所示,△A1B1C1的面积==. 【点睛】 本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接. 21.【分析】 先进行估算的范围,确定a,b的值,再代入代数式即可解答. 【详解】 解:∵, ∴的整数部分为2,小数部分为, 且. ∴的整数部分为4. ∴, ∴. 【点睛】 本题考查了估算无理数的大小, 解析: 【分析】 先进行估算的范围,确定a,b的值,再代入代数式即可解答. 【详解】 解:∵, ∴的整数部分为2,小数部分为, 且. ∴的整数部分为4. ∴, ∴. 【点睛】 本题考查了估算无理数的大小,解决本题的关键是估算的范围. 二十二、解答题 22.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析 【分析】 根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可. 【详解】 解:不能, 因为大正方形纸 解析:不能截得长宽之比为,且面积为cm2的长方形纸片,见解析 【分析】 根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可. 【详解】 解:不能, 因为大正方形纸片的面积为()2+()2=36(cm2), 所以大正方形的边长为6cm, 设截出的长方形的长为3b cm,宽为2b cm, 则6b2=30, 所以b=(取正值), 所以3b=3=>, 所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片. 【点睛】 本题考查了算术平方根,理解算术平方根的意义是正确解答的关键. 二十三、解答题 23.(1)49°,(2)44°,(3)∠OPQ=∠ORQ 【分析】 (1)根据∠OPA=∠QPB.可求出∠OPA的度数; (2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解 解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ 【分析】 (1)根据∠OPA=∠QPB.可求出∠OPA的度数; (2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题; (3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ. 【详解】 解:(1)∵∠OPA=∠QPB,∠OPQ=82°, ∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°, (2)作PC∥m, ∵m∥n, ∴m∥PC∥n, ∴∠AOP=∠OPC=43°, ∠BQP=∠QPC=49°, ∴∠OPQ=∠OPC+∠QPC=43°+49°=92°, ∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°, (3)∠OPQ=∠ORQ. 理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC, ∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角, ∴∠AOP=∠DOR,∠BQP=∠RQC, ∴∠OPQ=∠ORQ. 【点睛】 本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的. 24.(1),;(2)15秒或63秒;(3)不发生变化, 【分析】 (1)利用非负数的性质解决问题即可. (2)分三种情形,利用平行线的性质构建方程即可解决问题. (3)由参数表示,即可判断. 【详解】 解析:(1),;(2)15秒或63秒;(3)不发生变化, 【分析】 (1)利用非负数的性质解决问题即可. (2)分三种情形,利用平行线的性质构建方程即可解决问题. (3)由参数表示,即可判断. 【详解】 解:(1)∵, ∴, ,; (2)设灯转动秒,两灯的光束互相平行, ①当时, , 解得; ②当时, , 解得; ③当时, , 解得,(不合题意) 综上所述,当t=15秒或63秒时,两灯的光束互相平行; (3)设灯转动时间为秒, , , 又, , 而, , , 即. 【点睛】 本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型. 25.解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5 【解析】 试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论; 拓展延伸:(1) 解析:解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5 【解析】 试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论; 拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论; (2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半, △AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论. 试题解析:解:解决问题 连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6. 拓展延伸: 解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2. (2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5, △AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5. 26.(1)110(2)(90 +n)(3)×90°+n° 【分析】 (1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可; (2)根据BO、CO分别是∠ABC与∠ACB的角平 解析:(1)110(2)(90 +n)(3)×90°+n° 【分析】 (1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可; (2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数; (3)根据规律直接计算即可. 【详解】 解:(1)∵∠A=40°, ∴∠ABC+∠ACB=140°, ∵点O是∠AB故答案为:110°;C与∠ACB的角平分线的交点, ∴∠OBC+∠OCB=70°, ∴∠BOC=110°. (2)∵∠A=n°, ∴∠ABC+∠ACB=180°-n°, ∵BO、CO分别是∠ABC与∠ACB的角平分线, ∴∠OBC+∠OCB=∠ABC+∠ACB =(∠ABC+∠ACB) =(180°﹣n°) =90°﹣n°, ∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°. 故答案为:(90+n); (3)由(2)得∠O=90°+n°, ∵∠ABO的平分线与∠ACO的平分线交于点O1, ∴∠O1BC=∠ABC,∠O1CB=∠ACB, ∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°, 同理,∠O2=×180°+n°, ∴∠On=×180°+ n°, ∴∠O2017=×180°+n°, 故答案为:×90°+n°. 【点睛】 本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 盐城 数学 期末试卷 试卷 word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文