人教版七年级下册数学期末解答题复习试卷(附答案).doc
《人教版七年级下册数学期末解答题复习试卷(附答案).doc》由会员分享,可在线阅读,更多相关《人教版七年级下册数学期末解答题复习试卷(附答案).doc(36页珍藏版)》请在咨信网上搜索。
人教版七年级下册数学期末解答题复习试卷(附答案) 一、解答题 1.如图,用两个面积为的小正方形拼成一个大的正方形. (1)则大正方形的边长是 ; (2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为? 2.如图,用两个面积为的小正方形纸片剪拼成一个大的正方形. (1)大正方形的边长是________; (2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为的长方形纸片,使它的长宽之比为,若能,求出这个长方形纸片的长和宽,若不能,请说明理由. 3.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长. 4.(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_______; (2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_____(填“”或“”或“”号); (3)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由? 5.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形. (1)拼成的正方形的面积与边长分别是多少? (2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少? (3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长 二、解答题 6.已知AB//CD. (1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D; (2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F. ①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数. ②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示) 7.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点. (1)若∠DAP=40°,∠FBP=70°,则∠APB= (2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由; (3)利用(2)的结论解答: ①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由; ②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示) 8.如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点. (1)若时,则___________; (2)试求出的度数(用含的代数式表示); (3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数.(用含的代数式表示) 9.(1)(问题)如图1,若,,.求的度数; (2)(问题迁移)如图2,,点在的上方,问,,之间有何数量关系?请说明理由; (3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数. 10.直线AB∥CD,点P为平面内一点,连接AP,CP. (1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数; (2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由; (3)如图③,点P在直线CD下方,当∠BAK=∠BAP,∠DCK=∠DCP时,写出∠AKC与∠APC之间的数量关系,并说明理由. 三、解答题 11.如图1所示:点E为BC上一点,∠A=∠D,AB∥CD (1)直接写出∠ACB与∠BED的数量关系; (2)如图2,AB∥CD,BG平分∠ABE,BG的反向延长线与∠EDF的平分线交于H点,若∠DEB比∠GHD大60°,求∠DEB 的度数; (3)保持(2)中所求的∠DEB的度数不变,如图3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角). 12.已知,交AC于点E,交AB于点F. (1)如图1,若点D在边BC上, ①补全图形; ②求证:. (2)点G是线段AC上的一点,连接FG,DG. ①若点G是线段AE的中点,请你在图2中补全图形,判断,,之间的数量关系,并证明; ②若点G是线段EC上的一点,请你直接写出,,之间的数量关系. 13.如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转. (1)①如图1,∠DPC= 度. ②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10°逆时针旋转一周(0°旋转360°),问旋转时间t为多少时,这两个三角形是“孪生三角形”. (2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,以下两个结论:①为定值;②∠BPN+∠CPD为定值,请选择你认为对的结论加以证明. 14.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D. (1)①∠ABN的度数是 ;②∵AM∥BN,∴∠ACB=∠ ; (2)求∠CBD的度数; (3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律; (4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 . 15.如图,直线,一副三角板(,,)按如图①放置,其中点在直线上,点均在直线上,且平分. (1)求的度数. (2)如图②,若将三角形绕点以每秒的速度按逆时针方向旋转(的对应点分别为).设旋转时间为秒. ①在旋转过程中,若边,求的值; ②若在三角形绕点旋转的同时,三角形绕点以每秒的速度按顺时针方向旋转(的对应点分别为).请直接写出当边时的值. 四、解答题 16.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F. (1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: . (2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) . ① 求∠B的度数; ②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由. 17.(生活常识) 射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 . (现象解释) 如图 2,有两块平面镜 OM,ON,且 OM⊥ON,入射光线 AB 经过两次反射,得到反射光线 CD.求证 AB∥CD. (尝试探究) 如图 3,有两块平面镜 OM,ON,且∠MON =55° ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于点 E,求∠BEC 的大小. (深入思考) 如图 4,有两块平面镜 OM,ON,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,∠BED=β , α 与 β 之间满足的等量关系是 .(直接写出结果) 18.如图,平分,平分, 请判断与的位置关系并说明理由; 如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由. 如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,①当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由.②当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由. 19.如图,在中,与的角平分线交于点. (1)若,则 ; (2)若,则 ; (3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则 . 20.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F; ①若∠B=90°则∠F= ; ②若∠B=a,求∠F的度数(用a表示); (2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值. 【参考答案】 一、解答题 1.(1);(2)无法裁出这样的长方形. 【分析】 (1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小 解析:(1);(2)无法裁出这样的长方形. 【分析】 (1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可. 【详解】 解:(1)由题意得,大正方形的面积为200+200=400cm2, ∴边长为: ; 根据题意设长方形长为 cm,宽为 cm, 由题: 则 长为 无法裁出这样的长方形. 【点睛】 本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键. 2.(1)4;(2)不能,理由见解析. 【分析】 (1)根据已知正方形的面积求出大正方形的边长即可; (2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再 解析:(1)4;(2)不能,理由见解析. 【分析】 (1)根据已知正方形的面积求出大正方形的边长即可; (2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可. 【详解】 解:(1)两个正方形面积之和为:2×8=16(cm2), ∴拼成的大正方形的面积=16(cm2), ∴大正方形的边长是4cm; 故答案为:4; (2)设长方形纸片的长为2xcm,宽为xcm, 则2x•x=14, 解得:, 2x=2>4, ∴不存在长宽之比为且面积为的长方形纸片. 【点睛】 本题考查了算术平方根,能够根据题意列出算式是解此题的关键. 3.正方形纸板的边长是18厘米 【分析】 根据正方形的面积公式进行解答. 【详解】 解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得: , ∴, 取正值,可得, 解析:正方形纸板的边长是18厘米 【分析】 根据正方形的面积公式进行解答. 【详解】 解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得: , ∴, 取正值,可得, ∴答:正方形纸板的边长是18厘米. 【点评】 本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式. 4.(1);(2);(3)不能裁剪出,详见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形 解析:(1);(2);(3)不能裁剪出,详见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可; (3)利用方程思想求出长方形的长边,与正方形边长比较大小即可; 【详解】 解:(1)∵小正方形的边长为1cm, ∴小正方形的面积为1cm2, ∴两个小正方形的面积之和为2cm2, 即所拼成的大正方形的面积为2 cm2, ∴大正方形的边长为cm, (2)∵, ∴, ∴, 设正方形的边长为a ∵, ∴, ∴, ∴ 故答案为:<; (3)解:不能裁剪出,理由如下: ∵长方形纸片的长和宽之比为, ∴设长方形纸片的长为,宽为, 则, 整理得:, ∴, ∵450>400, ∴, ∴, ∴长方形纸片的长大于正方形的边长, ∴不能裁出这样的长方形纸片. 【点睛】 本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查. 5.(1)5;;(2);;(3)能,. 【分析】 (1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长. (2)求出斜边长即可. (3)一共有10个小正 解析:(1)5;;(2);;(3)能,. 【分析】 (1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长. (2)求出斜边长即可. (3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图. 【详解】 试题分析: 解:(1)拼成的正方形的面积与原面积相等1×1×5=5, 边长为, 如图(1) (2)斜边长=, 故点A表示的数为:;点A表示的相反数为: (3)能,如图 拼成的正方形的面积与原面积相等1×1×10=10,边长为. 考点:1.作图—应用与设计作图;2.图形的剪拼. 二、解答题 6.(1)见解析;(2)55°;(3) 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图 解析:(1)见解析;(2)55°;(3) 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数. 【详解】 解:(1)如图1,过点作, 则有, , , , ; (2)①如图2,过点作, 有. , . . . 即, 平分,平分, ,, . 答:的度数为; ②如图3,过点作, 有. , , . . . 即, 平分,平分, ,, . 答:的度数为. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 7.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】 (1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM= 解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】 (1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证; (2)结论:∠APB=∠DAP+∠FBP. (3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解. 【详解】 (1)证明:过P作PM∥CD, ∴∠APM=∠DAP.(两直线平行,内错角相等), ∵CD∥EF(已知), ∴PM∥CD(平行于同一条直线的两条直线互相平行), ∴∠MPB=∠FBP.(两直线平行,内错角相等), ∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质) 即∠APB=∠DAP+∠FBP=40°+70°=110°. (2)结论:∠APB=∠DAP+∠FBP. 理由:见(1)中证明. (3)①结论:∠P=2∠P1; 理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1, ∵∠DAP=2∠DAP1,∠FBP=2∠FBP1, ∴∠P=2∠P1. ②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2, ∵AP2、BP2分别平分∠CAP、∠EBP, ∴∠CAP2=∠CAP,∠EBP2=∠EBP, ∴∠AP2B=∠CAP+∠EBP, = (180°-∠DAP)+ (180°-∠FBP), =180°- (∠DAP+∠FBP), =180°- ∠APB, =180°- β. 【点睛】 本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线. 8.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n° 【分析】 (1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数; (2)同(1)中方法求解 解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n° 【分析】 (1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数; (2)同(1)中方法求解即可; (3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可. 【详解】 解:(1)当n=20时,∠ABC=40°, 过E作EF∥AB,则EF∥CD, ∴∠BEF=∠ABE,∠DEF=∠CDE, ∵BE平分∠ABC,DE平分∠ADC, ∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°, ∴∠BED=∠BEF+∠DEF=60°; (2)同(1)可知: ∠BEF=∠ABE=n°,∠DEF=∠CDE=40°, ∴∠BED=∠BEF+∠DEF=n°+40°; (3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°; 当点B在点A右侧时, 如图所示,过点E作EF∥AB, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°, ∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°, ∵AB∥CD∥EF, ∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°, ∴∠BED=∠BEF-∠DEF=n°-40°; 如图所示,过点E作EF∥AB, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°, ∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°, ∵AB∥CD∥EF, ∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°, ∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°; 如图所示,过点E作EF∥AB, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°, ∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°, ∵AB∥CD∥EF, ∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°, ∴∠BED=∠BEF-∠DEF=n°-40°; 综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°. 【点睛】 此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键. 9.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α 【分析】 (1)根据平行线的性质与判定可求解; (2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PF 解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α 【分析】 (1)根据平行线的性质与判定可求解; (2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解; (3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解. 【详解】 解:(1)如图1,过点P作PM∥AB, ∴∠1=∠AEP. 又∠AEP=40°, ∴∠1=40°. ∵AB∥CD, ∴PM∥CD, ∴∠2+∠PFD=180°. ∵∠PFD=130°, ∴∠2=180°-130°=50°. ∴∠1+∠2=40°+50°=90°. 即∠EPF=90°. (2)∠PFC=∠PEA+∠P. 理由:过P点作PN∥AB,则PN∥CD, ∴∠PEA=∠NPE, ∵∠FPN=∠NPE+∠FPE, ∴∠FPN=∠PEA+∠FPE, ∵PN∥CD, ∴∠FPN=∠PFC, ∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P; (3)令AB与PF交点为O,连接EF,如图3. 在△GFE中,∠G=180°-(∠GFE+∠GEF), ∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE, ∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE, ∵由(2)知∠PFC=∠PEA+∠P, ∴∠PEA=∠PFC-α, ∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC, ∴∠GEF+∠GFE=(∠PFC−α)+∠PFC+180°−∠PFC=180°−α, ∴∠G=180°−(∠GEF+∠GFE)=180°−180°+α=α. 【点睛】 本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键. 10.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析 【分析】 (1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠ 解析:(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析 【分析】 (1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可; (2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,进而得到∠AKC=∠APC; (3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,进而得到∠BAK﹣∠DCK=∠APC. 【详解】 (1)如图1,过P作PE∥AB, ∵AB∥CD, ∴PE∥AB∥CD, ∴∠APE=∠BAP,∠CPE=∠DCP, ∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°; (2)∠AKC=∠APC. 理由:如图2,过K作KE∥AB, ∵AB∥CD, ∴KE∥AB∥CD, ∴∠AKE=∠BAK,∠CKE=∠DCK, ∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK, 过P作PF∥AB, 同理可得,∠APC=∠BAP+∠DCP, ∵∠BAP与∠DCP的角平分线相交于点K, ∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC, ∴∠AKC=∠APC; (3)∠AKC=∠APC 理由:如图3,过K作KE∥AB, ∵AB∥CD, ∴KE∥AB∥CD, ∴∠BAK=∠AKE,∠DCK=∠CKE, ∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK, 过P作PF∥AB, 同理可得,∠APC=∠BAP﹣∠DCP, ∵∠BAK=∠BAP,∠DCK=∠DCP, ∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC, ∴∠AKC=∠APC. 【点睛】 本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算. 三、解答题 11.(1) ;(2) ;(3)不发生变化,理由见解析 【分析】 (1)如图1,延长DE交AB于点F,根据平行线的性质推出; (2)如图2,过点E作ES∥AB,过点H作HT∥AB,根据AB∥CD,AB∥E 解析:(1) ;(2) ;(3)不发生变化,理由见解析 【分析】 (1)如图1,延长DE交AB于点F,根据平行线的性质推出; (2)如图2,过点E作ES∥AB,过点H作HT∥AB,根据AB∥CD,AB∥ES推出,再根据AB∥TH,AB∥CD推出,最后根据比大得出的度数; (3)如图3,过点E作EQ∥DN,根据得出的度数,根据条件再逐步求出的度数. 【详解】 (1)如答图1所示,延长DE交AB于点F. AB∥CD,所以, 又因为,所以,所以AC∥DF,所以. 因为,所以. (2)如答图2所示,过点E作ES∥AB,过点H作HT∥AB. 设,, 因为AB∥CD,AB∥ES,所以,, 所以, 因为AB∥TH,AB∥CD,所以,,所以, 因为比大,所以,所以,所以,所以 (3)不发生变化 如答图3所示,过点E作EQ∥DN. 设,, 由(2)易知,所以,所以, 所以, 所以. 【点睛】 本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键. 12.(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF 【分析】 (1)①根据题意画出图形;②依据DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠ 解析:(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF 【分析】 (1)①根据题意画出图形;②依据DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,进而得出∠EDF=∠A; (2)①过G作GH∥AB,依据平行线的性质,即可得到∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②过G作GH∥AB,依据平行线的性质,即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF. 【详解】 解:(1)①如图, ②∵DE∥AB,DF∥AC, ∴∠EDF+∠AFD=180°,∠A+∠AFD=180°, ∴∠EDF=∠A; (2)①∠AFG+∠EDG=∠DGF. 如图2所示,过G作GH∥AB, ∵AB∥DE, ∴GH∥DE, ∴∠AFG=∠FGH,∠EDG=∠DGH, ∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF; ②∠AFG-∠EDG=∠DGF. 如图所示,过G作GH∥AB, ∵AB∥DE, ∴GH∥DE, ∴∠AFG=∠FGH,∠EDG=∠DGH, ∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF. 【点睛】 本题考查了平行线的判定和性质:两直线平行,内错角相等.正确的作出辅助线是解题的关键. 13.(1)①90;②t为或或或或或或;(2)①正确,②错误,证明见解析. 【分析】 (1)①由平角的定义,结合已知条件可得:从而可得答案;②当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和 解析:(1)①90;②t为或或或或或或;(2)①正确,②错误,证明见解析. 【分析】 (1)①由平角的定义,结合已知条件可得:从而可得答案;②当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时的旋转时间与相同; (2)分两种情况讨论:当在上方时,当在下方时,①分别用含的代数式表示,从而可得的值;②分别用含的代数式表示,得到是一个含的代数式,从而可得答案. 【详解】 解:(1)①∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°, ∴∠DPC=180﹣30﹣60=90°, 故答案为90; ②如图1﹣1,当BD∥PC时, ∵PC∥BD,∠DBP=90°, ∴∠CPN=∠DBP=90°, ∵∠CPA=60°, ∴∠APN=30°, ∵转速为10°/秒, ∴旋转时间为3秒; 如图1﹣2,当PC∥BD时, ∵∠PBD=90°, ∴∠CPB=∠DBP=90°, ∵∠CPA=60°, ∴∠APM=30°, ∵三角板PAC绕点P逆时针旋转的角度为180°+30°=210°, ∵转速为10°/秒, ∴旋转时间为21秒, 如图1﹣3,当PA∥BD时,即点D与点C重合,此时∠ACP=∠BPD=30°,则AC∥BP, ∵PA∥BD, ∴∠DBP=∠APN=90°, ∴三角板PAC绕点P逆时针旋转的角度为90°, ∵转速为10°/秒, ∴旋转时间为9秒, 如图1﹣4,当PA∥BD时, ∵∠DPB=∠ACP=30°, ∴AC∥BP, ∵PA∥BD, ∴∠DBP=∠BPA=90°, ∴三角板PAC绕点P逆时针旋转的角度为90°+180°=270°, ∵转速为10°/秒, ∴旋转时间为27秒, 如图1﹣5,当AC∥DP时, ∵AC∥DP, ∴∠C=∠DPC=30°, ∴∠APN=180°﹣30°﹣30°﹣60°=60°, ∴三角板PAC绕点P逆时针旋转的角度为60°, ∵转速为10°/秒, ∴旋转时间为6秒, 如图1﹣6,当时, ∴三角板PAC绕点P逆时针旋转的角度为 ∵转速为10°/秒, ∴旋转时间为秒, 如图1﹣7,当AC∥BD时, ∵AC∥BD, ∴∠DBP=∠BAC=90°, ∴点A在MN上, ∴三角板PAC绕点P逆时针旋转的角度为180°, ∵转速为10°/秒, ∴旋转时间为18秒, 当时,如图1-3,1-4,旋转时间分别为:, 综上所述:当t为或或或或或或时,这两个三角形是“孪生三角形”; (2)如图,当在上方时, ①正确, 理由如下:设运动时间为t秒,则∠BPM=2t, ∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t. ∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t, ∴ ②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误. 当在下方时,如图, ①正确, 理由如下:设运动时间为t秒,则∠BPM=2t, ∴∠BPN=180°﹣2t,∠DPM= ∠APN=3t. ∴∠CPD= ∴ ②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误. 综上:①正确,②错误. 【点睛】 本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键. 14.(1)① ②;(2);(3)不变,,理由见解析;(4) 【分析】 (1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出; (2)由角平分线的 解析:(1)① ②;(2);(3)不变,,理由见解析;(4) 【分析】 (1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出; (2)由角平分线的定义可以证明∠CBD=∠ABN,即可求出结果; (3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论; (4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数. 【详解】 解:(1)①∵AM//BN,∠A=64°, ∴∠ABN=180°﹣∠A=116°, 故答案为:116°; ②∵AM//BN, ∴∠ACB=∠CBN, 故答案为:CBN; (2)∵AM//BN, ∴∠ABN+∠A=180°, ∴∠ABN=180°﹣64°=116°, ∴∠ABP+∠PBN=116°, ∵BC平分∠ABP,BD平分∠PBN, ∴∠ABP=2∠CBP,∠PBN=2∠DBP, ∴2∠CBP+2∠DBP=116°, ∴∠CBD=∠CBP+∠DBP=58°; (3)不变, ∠APB:∠ADB=2:1, ∵AM//BN, ∴∠APB=∠PBN,∠ADB=∠DBN, ∵BD平分∠PBN, ∴∠PBN=2∠DBN, ∴∠APB:∠ADB=2:1; (4)∵AM//BN, ∴∠ACB=∠CBN, 当∠ACB=∠ABD时, 则有∠CBN=∠ABD, ∴∠ABC+∠CBD=∠CBD+∠DBN ∴∠ABC=∠DBN, 由(1)∠ABN=116°, ∴∠CBD=58°, ∴∠ABC+∠DBN=58°, ∴∠ABC=29°, 故答案为:29°. 【点睛】 本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等. 15.(1)60°;(2)①6s;②s或s 【分析】 (1)利用平行线的性质角平分线的定义即可解决问题. (2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题. ②分两种情形:如图③中,当 解析:(1)60°;(2)①6s;②s或s 【分析】 (1)利用平行线的性质角平分线的定义即可解决问题. (2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题. ②分两种情形:如图③中,当BG∥HK时,延长KH交MN于R.根据∠GBN=∠KRN构建方程即可解决问题.如图③-1中,当BG∥HK时,延长HK交MN于R.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 期末 解答 复习 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文