初一数学下册期末压轴题试题(带答案)-(一)解析.doc
《初一数学下册期末压轴题试题(带答案)-(一)解析.doc》由会员分享,可在线阅读,更多相关《初一数学下册期末压轴题试题(带答案)-(一)解析.doc(50页珍藏版)》请在咨信网上搜索。
一、解答题 1.在平面直角坐标系中,,满足. (1)直接写出、的值: ; ; (2)如图1,若点满足的面积等于6,求的值; (3)设线段交轴于C,动点E从点C出发,在轴上以每秒1个单位长度的速度向下运动,动点F从点出发,在轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为秒,问为何值时,有?请求出的值. 2.问题情境: (1)如图1,,,.求度数.小颖同学的解题思路是:如图2,过点作,请你接着完成解答. 问题迁移: (2)如图3,,点在射线上运动,当点在、两点之间运动时,,.试判断、、之间有何数量关系?(提示:过点作),请说明理由; (3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你猜想、、之间的数量关系并证明. 3.如图1,点在直线、之间,且. (1)求证:; (2)若点是直线上的一点,且,平分交直线于点,若,求的度数; (3)如图3,点是直线、外一点,且满足,,与交于点.已知,且,则的度数为______(请直接写出答案,用含的式子表示). 4.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN. (1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°; (2)如图2,∠BMH和∠HND的角平分线相交于点E. ①请直接写出∠MEN与∠MHN的数量关系: ; ②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论) 5.如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间. (1)求证:∠CAB=∠MCA+∠PBA; (2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE; (3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数. 6.如图,直线,点是、之间(不在直线,上)的一个动点. (1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由; (2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值; (3)如图3,若点是下方一点,平分, 平分,已知,求的度数. 7.探究与应用: 观察下列各式: 1+3= 2 1+3+5= 2 1+3+5+7= 2 1+3+5+7+9= 2 …… 问题:(1)在横线上填上适当的数; (2)写出一个能反映此计算一般规律的式子; (3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示) 8.观察下面的变形规律: ;;;…. 解答下面的问题: (1)仿照上面的格式请写出= ; (2)若n为正整数,请你猜想= ; (3)基础应用:计算:. (4)拓展应用1:解方程: =2016 (5)拓展应用2:计算:. 9.对非负实数“四舍五入”到各位的值记为.即:当为非负整数时,如果,则;反之,当为非负整数时,如果,则. 例如:,. (1)计算: ; ; (2)①求满足的实数的取值范围, ②求满足的所有非负实数的值; (3)若关于的方程有正整数解,求非负实数的取值范围. 10.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法. (1)图2中A、B两点表示的数分别为___________,____________; (2)请你参照上面的方法: ①把图3中的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长___________.(注:小正方形边长都为1,拼接不重叠也无空隙) ②在①的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及.(图中标出必要线段的长) 11.若一个四位数t的前两位数字相同且各位数字均不为0,则称这个数为“前介数”;若把这个数的个位数字放到前三位数字组成的数的前面组成一个新的四位数,则称这个新的四位数为“中介数”;记一个“前介数”t与它的“中介数”的差为P(t).例如,5536前两位数字相同,所以5536为“前介数”;则6553就为它的“中介数”,P(5536)=5536﹣6553=-1017. (1)P(2215)= ,P(6655)= . (2)求证:任意一个“前介数”t,P(t)一定能被9整除. (3)若一个千位数字为2的“前介数”t能被6整除,它的“中介数”能被2整除,请求出满足条件的P(t)的最大值. 12.阅读材料:求的值. 解:设①,将等式①的两边同乘以2, 得②, 用②-①得, 即. 即. 请仿照此法计算: (1)请直接填写的值为______; (2)求值; (3)请直接写出的值. 13.在平面直角坐标系中,如图正方形的顶点,坐标分别为,,点,坐标分别为,,且,以为边作正方形.设正方形与正方形重叠部分面积为. (1)①当点与点重合时,的值为______;②当点与点重合时,的值为______. (2)请用含的式子表示,并直接写出的取值范围. 14.已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E. (1)如图1,求证:HG⊥HE; (2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME; (3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数. 15.在平面直角坐标系中描出下列两组点,分别将每组里的点用线段依次连接起来. 第一组:、; 第二组:、. (1)线段与线段的位置关系是; (2)在(1)的条件下,线段、分别与轴交于点,.若点为射线上一动点(不与点,重合). ①当点在线段上运动时,连接、,补全图形,用等式表示、、之间的数量关系,并证明. ②当与面积相等时,求点的坐标. 16.某水果店到水果批发市场采购苹果,师傅看中了甲、乙两家某种品质一样的苹果,零售价都为8元/千克,批发价各不相同,甲家规定:批发数量不超过100千克,全部按零价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠,乙家的规定如下表: 数量范围(千克) 不超过50的部分 50以上但不超过150的部分 150以上的部分 价格(元) 零售价的95% 零售价的85% 零售价的75% (1)如果师傅要批发240千克苹果选择哪家批发更优惠? (2)设批发x千克苹果(),问师傅应怎样选择两家批发商所花费用更少? 17.如图1,以直角的直角顶点为原点,以,所在直线为轴和轴建立平面直角坐标系,点,,并且满足. (1)直接写出点,点的坐标; (2)如图1,坐标轴上有两动点,同时出发,点从点出发沿轴负方向以每秒2个单位长度的速度匀速运动,点从点出发沿轴正方向以每秒个单位长度的速度匀速运动,当点到达点整个运动随之结束;线段的中点的坐标是,设运动时间为秒.是否存在,使得与的面积相等?若存在,求出的值;若不存在,说明理由; (3)如图2,在(2)的条件下,若,点是第二象限中一点,并且平分,点是线段上一动点,连接交于点,当点在上运动的过程中,探究,,之间的数量关系,直接写出结论. 18.如图所示,在直角坐标系中,已知,,将线段平移至,连接、、、,且,点在轴上移动(不与点、重合). (1)直接写出点的坐标; (2)点在运动过程中,是否存在的面积是的面积的3倍,如果存在请求出点的坐标,如果不存在请说明理由; (3)点在运动过程中,请写出、、三者之间存在怎样的数量关系,并说明理由. 19.某企业用规格是170cm×40cm的标准板材作为原材料,按照图①所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm). (1)求图中a、b的值; (2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图②所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计). ①一共可裁剪出甲型板材 张,乙型板材 张; ②恰好一共可以做出竖式和横式两种无盖装饰盒子多少个? 20.(1)阅读下列材料并填空: 对于二元一次方程组,我们可以将x,y的系数和相应的常数项排成一个数表,求得的一次方程组的解 ,用数表可表示为.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白: 从而得到该方程组的解为x= ,y= . (2)仿照(1)中数表的书写格式写出解方程组的过程. 21.七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连. (1)分数5,10,15,20中,每人得分不可能是________分. (2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数. ①问(1)班有多少人得满分? ②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高? 22.我市某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图甲,(单位:) (1)列出方程(组),求出图甲中a与b的值; (2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式与横式两种礼品盒. ①两种裁法共产生A型板材________张,B型板材_______张; ②已知①中的A型板材和B型板材恰好做成竖式有盖礼品盒x个,横式无盖礼品盒的y个,求x、y的值. 23.已知,在平面直角坐标系中,三角形三个顶点的坐标分别为,,,轴,且、满足. (1)则______;______;______; (2)如图1,在轴上是否存在点,使三角形的面积等于三角形的面积?若存在,请求出点的坐标;若不存在,请说明理由; (3)如图2,连接交于点,点在轴上,若三角形的面积小于三角形的面积,直接写出的取值范围是______. 24.如图,在平面直角坐标系中,已知,点,,,,,满足, (1)直接写出点,,的坐标及的面积; (2)如图2,过点作直线,已知是上的一点,且,求的取值范围; (3)如图3,是线段上一点, ①求,之间的关系; ②点为点关于轴的对称点,已知,求点的坐标. 25.某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子. (1)若现有A型板材150张,B型板材300张,可制作竖式和横式两种无盖箱子各多少个? (2)若该工厂准备用不超过24000元资金去购买A、B两种型号板材,制作竖式、横式箱子共100个,已知A型板材每张20元,B型板材每张60元,问最多可以制作竖式箱子多少个? (3)若该工厂新购得65张规格为的C型正方形板材,将其全部切割成A型或B型板材(不计损耗),用切割的板材制作两种类型的箱子,要求竖式箱子不少于10个,且材料恰好用完,则最多可以制作竖式箱子多少个? 26.在平面直角坐标系xOy中.点A,B,P不在同一条直线上.对于点P和线段AB给出如下定义:过点P向线段AB所在直线作垂线,若垂足Q落在线段AB上,则称点P为线段AB的内垂点.若垂足Q满足|AQ-BQ|最小,则称点P为线段AB的最佳内垂点.已知点A(﹣2,1),B(1,1),C(﹣4,3). (1)在点P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,线段AB的内垂点为 ; (2)点M是线段AB的最佳内垂点且到线段AB的距离是2,则点M的坐标为 ; (3)点N在y轴上且为线段AC的内垂点,则点N的纵坐标n的取值范围是 ; (4)已知点D(m,0),E(m+4,0),F(2m,3).若线段CF上存在线段DE的最佳内垂点,求m的取值范围. 27.中国传统节日“端午节”期间,某商场开展了“欢度端午,回馈顾客”的让利促销活动,对部分品牌的粽子进行了打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买5盒甲品牌粽子和4盒乙品牌粽子需520元. (1)打折前,每盒甲、乙品牌粽子分别为多少元? (2)在商场让利促销活动期间,某敬老院准备购买甲、乙两种品牌粽子共40盒,总费用不超过2300元,问敬老院最多可购买多少盒乙品牌粽子? 28.对于平面直角坐标系xOy中的任意两点M(x1,y1),N(x2,y2),给出如下定义: 将|x1﹣x2|称为点M,N之间的“横长”,|y1﹣y2|称为点M,N之间的纵长”,点M与点N的“横长”与“纵长”之和称为“折线距离”,记作d(M,N)=|x1﹣x2|+|y1﹣y2|“. 例如:若点M(﹣1,1),点N(2,﹣2),则点M与点N的“折线距离”为:d(M,N)=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6. 根据以上定义,解决下列问题: 已知点P(3,2). (1)若点A(a,2),且d(P,A)=5,求a的值; (2)已知点B(b,b),且d(P,B)<3,直接写出b的取值范围; (3)若第一象限内的点T与点P的“横长”与“纵长”相等,且d(P,T)>5,简要分析点T的横坐标t的取值范围. 29.某超市分别以每盏150元,190元的进价购进A,B两种品牌的护眼灯,下表是近两天的销售情况. 销售日期 销售数量(盏) 销售收入(元) A品牌 B品牌 第一天 2 1 680 第二天 3 4 1670 (1)求A,B两种品牌护眼灯的销售价; (2)若超市准备用不超过4900元的金额购进这两种品牌的护眼灯共30盏,求B品牌的护眼灯最多采购多少盏? 30.如图,在平面直角坐标系中,四边形各顶点的坐标分别为,,,,现将四边形经过平移后得到四边形,点的对应点的坐标为. (1)请直接写点、、的坐标; (2)求四边形与四边形重叠部分的面积; (3)在轴上是否存在一点,连接、,使,若存在这样一点,求出点的坐标;若不存在,请说明理由. 【参考答案】***试卷处理标记,请不要删除 一、解答题 1.(1),2;(2)或;(3)或2 【分析】 (1)由,求出和的值即可; (2)过点作直线轴,延长交于,设出点坐标,根据面积关系求出点坐标,再求出的长度,即可求出值; (3)先根据求出点坐标,再根据面积关系求出值即可. 【详解】 解:(1), ,, ,, 故答案为,2; (2)如图1,过作直线垂直于轴,延长交直线于点,设的坐标为, 过作交直线于点,连接,, , , 解得, , , 又点满足的面积等于6, , 解得或; (3)如图2,延长交轴于,过作轴于,过作轴于, , , 解得, , , , 解得, , ,, 由题知,当秒时,, , , ,, , , 解得或2. 【点睛】 本题是三角形综合题,考查三角形的面积,熟练掌握直角坐标系的知识,三角形的面积,梯形面积等知识是解题的关键. 2.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析 【分析】 (1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=113°; (2)过过作交于,,推出,根据平行线的性质得出,即可得出答案; (3)画出图形(分两种情况:①点P在BA的延长线上,②当在之间时(点不与点,重合)),根据平行线的性质即可得出答案. 【详解】 解:(1)过作, , , ,, , ,, ; (2),理由如下: 如图3,过作交于, , , ,, ,, 又 ; (3)①当在延长线时(点不与点重合),; 理由:如图4,过作交于, , , ,, ,, , 又, ; ②当在之间时(点不与点,重合),. 理由:如图5,过作交于, , , ,, ,, , 又 . 【点睛】 本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角. 3.(1)见解析;(2)10°;(3) 【分析】 (1)过点E作EF∥CD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明; (2)过点E作HE∥CD,设 由(1)得AB∥CD,则AB∥CD∥HE,由平行线的性质,得出再由平分,得出则,则可列出关于x和y的方程,即可求得x,即的度数; (3)过点N作NP∥CD,过点M作QM∥CD,由(1)得AB∥CD,则NP∥CD∥AB∥QM,根据和,得出根据CD∥PN∥QM,DE∥NB,得出即根据NP∥AB,得出再由,得出由AB∥QM,得出因为,代入的式子即可求出. 【详解】 (1)过点E作EF∥CD,如图, ∵EF∥CD, ∴ ∴ ∵, ∴ ∴EF∥AB, ∴CD∥AB; (2)过点E作HE∥CD,如图, 设 由(1)得AB∥CD,则AB∥CD∥HE, ∴ ∴ 又∵平分, ∴ ∴ 即 解得:即; (3)过点N作NP∥CD,过点M作QM∥CD,如图, 由(1)得AB∥CD,则NP∥CD∥AB∥QM, ∵NP∥CD,CD∥QM, ∴, 又∵, ∴ ∵, ∴ ∴ 又∵PN∥AB, ∴ ∵, ∴ 又∵AB∥QM, ∴ ∴ ∴. 【点睛】 本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系. 4.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20° 【分析】 (1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证. (2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°. ②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数. 【详解】 解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1 ∵EP∥AB且ME平分∠BMH, ∴∠MEQ=∠BME=∠BMH. ∵EP∥AB,AB∥CD, ∴EP∥CD,又NE平分∠GND, ∴∠QEN=∠DNE=∠GND.(两直线平行,内错角相等) ∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND). ∴2∠MEN=∠BMH+∠GND. ∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH. ∴∠DHN=∠BMH﹣∠MHN. ∴∠GND+∠BMH﹣∠MHN=180°, 即2∠MEN﹣∠MHN=180°. (2)①:过点H作GI∥AB.如答图2 由(1)可得∠MEN=(∠BMH+∠HND), 由图可知∠MHN=∠MHI+∠NHI, ∵GI∥AB, ∴∠AMH=∠MHI=180°﹣∠BMH, ∵GI∥AB,AB∥CD, ∴GI∥CD. ∴∠HNC=∠NHI=180°﹣∠HND. ∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND). 又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN, ∴∠BMH+∠HND=360°﹣∠MHN. 即2∠MEN+∠MHN=360°. 故答案为:2∠MEN+∠MHN=360°. ②:由①的结论得2∠MEN+∠MHN=360°, ∵∠H=∠MHN=140°, ∴2∠MEN=360°﹣140°=220°. ∴∠MEN=110°. 过点H作HT∥MP.如答图2 ∵MP∥NQ, ∴HT∥NQ. ∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补). ∵MP平分∠AMH, ∴∠PMH=∠AMH=(180°﹣∠BMH). ∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH. ∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°. ∵∠ENH=∠HND. ∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°. ∴∠ENQ+(HND+∠BMH)=130°. ∴∠ENQ+∠MEN=130°. ∴∠ENQ=130°﹣110°=20°. 【点睛】 本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强. 5.(1)证明见解析;(2)证明见解析;(3)120°. 【分析】 (1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解; (2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解; (3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解. 【详解】 解:(1)证明:如图1,过点A作AD∥MN, ∵MN∥PQ,AD∥MN, ∴AD∥MN∥PQ, ∴∠MCA=∠DAC,∠PBA=∠DAB, ∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA, 即:∠CAB=∠MCA+∠PBA; (2)如图2,∵CD∥AB, ∴∠CAB+∠ACD=180°, ∵∠ECM+∠ECN=180°, ∵∠ECN=∠CAB ∴∠ECM=∠ACD, 即∠MCA+∠ACE=∠DCE+∠ACE, ∴∠MCA=∠DCE; (3)∵AF∥CG, ∴∠GCA+∠FAC=180°, ∵∠CAB=60° 即∠GCA+∠CAB+∠FAB=180°, ∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA, 由(1)可知,∠CAB=∠MCA+∠ABP, ∵BF平分∠ABP,CG平分∠ACN, ∴∠ACN=2∠GCA,∠ABP=2∠ABF, 又∵∠MCA=180°﹣∠ACN, ∴∠CAB=180°﹣2∠GCA+2∠ABF=60°, ∴∠GCA﹣∠ABF=60°, ∵∠AFB+∠ABF+∠FAB=180°, ∴∠AFB=180°﹣∠FAB﹣∠FBA =180°﹣(120°﹣∠GCA)﹣∠ABF =180°﹣120°+∠GCA﹣∠ABF =120°. 【点睛】 本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键. 6.(1)见解析;(2);(3)75° 【分析】 (1)根据平行线的性质、余角和补角的性质即可求解. (2)根据平行线的性质、对顶角的性质和平角的定义解答即可. (3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可. 【详解】 解:(1)∠C=∠1+∠2, 证明:过C作l∥MN,如下图所示, ∵l∥MN, ∴∠4=∠2(两直线平行,内错角相等), ∵l∥MN,PQ∥MN, ∴l∥PQ, ∴∠3=∠1(两直线平行,内错角相等), ∴∠3+∠4=∠1+∠2, ∴∠C=∠1+∠2; (2)∵∠BDF=∠GDF, ∵∠BDF=∠PDC, ∴∠GDF=∠PDC, ∵∠PDC+∠CDG+∠GDF=180°, ∴∠CDG+2∠PDC=180°, ∴∠PDC=90°-∠CDG, 由(1)可得,∠PDC+∠CEM=∠C=90°, ∴∠AEN=∠CEM, ∴, (3)设BD交MN于J. ∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°, ∴∠PBD=2∠PBC=50°,∠CAM=∠MAD, ∵PQ∥MN, ∴∠BJA=∠PBD=50°, ∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM, 由(1)可得,∠ACB=∠PBC+∠CAM, ∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°. 【点睛】 本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系. 7.(1)2、3、4、5;(2)第n个等式为1+3+5+7+…+(2n+1)=n2; (3)﹣1.008016×106. 【分析】 (1) 根据从1开始连续n各奇数的和等于奇数的个数的平方即可得到. (2) 根据规律写出即可. (3) 先提取符号,再用规律解题. 【详解】 解:(1)1+3=22 1+3+5=32 1+3+5+7=42 1+3+5+7+9=52 …… 故答案为:2、3、4、5; (2)第n个等式为1+3+5+7+…+(2n+1)= (3)原式=﹣(1+3+5+7+9+…+2019) =﹣10102 =﹣1.0201×106. 【点睛】 本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可. 8.(1) ;(2) ;(3);(4)x=2017;(5) 【分析】 (1)类比题目中方法解答即可;(2)根据题目中所给的算式总结出规律,解答即可;(3)利用总结的规律把每个式子拆分后合并即可解答;(4)方程左边提取x后利用(3)的方法计算后,再解方程即可;(5)类比(3)的方法,拆项计算即可. 【详解】 (1) 故答案为:; (2)= 故答案为:; (3)计算: = =1﹣ =; (4) =2016 =2016, x=2017; (5). =+()+()+…+(). =(1﹣). =. 【点睛】 本题是数字规律探究题,解决问题基本思路是正确找出规律,根据所得的规律解决问题. 9.(1)2,3 (2)①② (3) 【分析】 (1)根据新定义的运算规则进行计算即可; (2)①根据新定义的运算规则即可求出实数的取值范围;②根据新定义的运算规则和为整数,即可求出所有非负实数的值; (3)先解方程求得,再根据方程的解是正整数解,即可求出非负实数的取值范围. 【详解】 (1)2;3; (2)①∵ ∴ 解得; ②∵ ∴ 解得 ∵为整数 ∴ 故所有非负实数的值有; (3) ∵方程的解为正整数 ∴或2 ①当时,是方程的增根,舍去 ②当时,. 【点睛】 本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键. 10.(1),;(2)①图见解析,;②见解析 【分析】 (1)根据图1得到小正方形的对角线长,即可得出数轴上点A和点B表示的数 (2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可; (3)从原点开始画一个长是2,高是1的长方形,对角线长即是a,再用圆规以这个长度画弧,交数轴于点M,再把这个长方形向左平移3个单位,用同样的方法得到点N. 【详解】 (1)由图1知,小正方形的对角线长是, ∴图2中点A表示的数是,点B表示的数是, 故答案是:,; (2)①长方形的面积是5,拼成的正方形的面积也应该是5, ∴正方形的边长是, 如图所示: 故答案是:; ②如图所示: 【点睛】 本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解. 11.(1)-3006,990;(2)见解析;(3)P(t)的最大值是P(2262)=36. 【分析】 (1)根据“前介数”t与它的“中介数”的差为P(t)的定义求解即可; (2)设“前介数”为且a、b、c均不为0的整数,即1a、b、c,根据定义得到P(t)=,则P(t)一定能被9整除; (3)设“前介数”为,根据题意得到能被3整除,且b只能取2,4,6,8中的其中一个数;对应的“中介数”是,得到a只能取2,4,6,8中的其中一个数,计算P(t),推出要求P(t)的最大值,即要尽量的大,要尽量的小,再分类讨论即可求解. 【详解】 (1)解:2215是“前介数”,其对应的“中介数”是5221, ∴P(2215)=2215-5221=-3006; 6655是“前介数”,其对应的“中介数”是5665, ∴P(6655)=6655-5665=990; 故答案为:-3006,990; (2)证明:设“前介数”为且a、b、c均为不为0的整数,即1a、b、c, ∴, 又对应的“中介数”是, ∴P(t)= , ∵a、b、c均不为0的整数, ∴为整数, ∴P(t)一定能被9整除; (3)证明:设“前介数”为且即1a、b,a、b均为不为0的整数, ∴, ∵能被6整除, ∴能被2整除,也能被3整除, ∴为偶数,且能被3整除, 又1, ∴b只能取2,4,6,8中的其中一个数, 又对应的“中介数”是, 且该“中介数”能被2整除, ∴为偶数, 又1, ∴a只能取2,4,6,8中的其中一个数, ∴P(t)= , 要求P(t)的最大值,即要尽量的大,要尽量的小, ①的最大值为8,的最小值为2,但此时, 且14不能被3整除,不符合题意,舍去; ②的最大值为6,的最小值仍为2,但此时,能被3整除, 且P(t)=2262-2226=36; ③的最大值仍为8,的最小值为4,但此时, 且16不能被3整除,不符合题意,舍去; 其他情况,减少,增大,则P(t)减少, ∴满足条件的P(t)的最大值是P(2262)=36. 【点睛】 本题考查用新定义解题,根据新定义,表示出“前介数”,与其对应的“中介数”是求解本题的关键.本题中运用到的分类讨论思想是重要一种数学解题思想方法. 12.(1)15;(2);(3). 【分析】 (1)先计算乘方,即可求出答案; (2)根据题目中的运算法则进行计算,即可求出答案; (3)根据题目中的运算法则进行计算,即可求出答案; 【详解】 解:(1); 故答案为:15; (2)设①,把等式①两边同时乘以5,得 ②, 由②①,得:, ∴, ∴; (3)设①, 把等式①乘以10,得: ②, 把①+②,得:, ∴, ∴, ∴ . 【点睛】 本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键. 13.(1)①1;②;(2). 【分析】 (1)①②根据点F的坐标构建方程即可解决问题. (2)分四种情形:①如图1中,当1≤m≤2时,重叠部分是四边形BEGN.②如图2中,当0<m<1时,重叠部分是正方形EFGH.③如图3中,-1<m<时,重叠部分是矩形AEHN.④如图4中,当-≤m<0时,重叠部分是正方形EFGH.分别求解即可解决问题. 【详解】 解:(1)①当点F与点B重合时,由题意3m=3, ∴m=1. ②当点F与点A重合时,由题意3m=-1, ∴m=, 故答案为1,. (2)①当时,如图1. ,. . ②当时,如图2. . . ③当时,如图3. ,. ④当时,如图4. . . 综上, . 【点睛】 本题属于四边形综合题,考查了正方形的性质,平移变换,四边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型. 14.(1)见解析;(2)见解析;(3)40° 【分析】 (1)根据平行线的性质和判定解答即可; (2)过点H作HP∥AB,根据平行线的性质解答即可; (3)过点H作HP∥AB,根据平行线的性质解答即可. 【详解】 证明:(1)∵AB∥CD, ∴∠AFE=∠FED, ∵∠AGH=∠FED, ∴∠AFE=∠AGH, ∴EF∥GH, ∴∠FEH+∠H=180°, ∵FE⊥HE, ∴∠FEH=90°, ∴∠H=180°﹣∠FEH=90°, ∴HG⊥HE; (2)过点M作MQ∥AB, ∵AB∥CD, ∴MQ∥CD, 过点H作HP∥AB, ∵AB∥CD, ∴HP∥CD, ∵GM平分∠HGB, ∴∠BGM=∠HGM=∠BGH, ∵EM平分∠HED, ∴∠HEM=∠DEM=∠HED, ∵MQ∥AB, ∴∠BGM=∠GMQ, ∵MQ∥CD, ∴∠QME=∠MED, ∴∠GME=∠GMQ+∠QME=∠BGM+∠MED, ∵HP∥AB, ∴∠BGH=∠GHP=2∠BGM, ∵HP∥CD, ∴∠PHE=∠HED=2∠MED, ∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED), ∴∠GHE=∠2GME; (3)过点M作MQ∥AB,过点H作HP∥AB, 由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x, 由(2)可知:∠BGH=2∠MGH=10x, ∵∠AFE+∠BFE=180°, ∴∠AFE=180°﹣10x, ∵FK平分∠AFE, ∴∠AFK=∠KFE= ∠AFE, 即, 解得:x=5°, ∴∠BGH=10x=50°, ∵HP∥AB,HP∥CD, ∴∠BGH=∠GHP=50°,∠PHE=∠HED, ∵∠GHE=90°, ∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°, ∴∠HED=40°. 【点睛】 本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键. 15.(1)AC∥DE;(2)①∠CAM+∠MDE=∠AMD,证明见解析;②点M的坐标为(0,)或(0,). 【分析】 (1)根据两点的纵坐标相等,连线平行x轴进行判断即可; (2)①过点M作MN∥AC,运用平行线的判定和性质即可;②设M(0,m),分两种情况:(i)当点M在线段OB上时,(ii)当点M在线段OB的延长线上时,分别运用三角形面积公式进行计算即可. 【详解】 解:(1)∵A(−3,3)、C(4,3), ∴AC∥x轴, ∵D(−2,−1)、E(2,−1), ∴DE∥x轴, ∴AC∥DE; (2)①如图,∠CAM+∠MDE=∠AMD. 理由如下: 过点M作MN∥AC, ∵MN∥AC(作图), ∴∠CAM=∠AMN(两直线平行,内错角相等), ∵AC∥DE(已知), ∴MN∥DE(平行公理推论), ∴∠MDE=∠NMD(两直线平行,内错角相等), ∴∠CAM+∠MDE=∠AMN+∠NMD=∠AMD(等量- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初一 数学 下册 期末 压轴 试题 答案 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文