2003年北京高考文科数学真题及答案.doc
《2003年北京高考文科数学真题及答案.doc》由会员分享,可在线阅读,更多相关《2003年北京高考文科数学真题及答案.doc(10页珍藏版)》请在咨信网上搜索。
2003年北京高考文科数学真题及答案 本试卷分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟 第Ⅰ卷(选择题 共50分) 注意事项: 1.答第Ⅰ卷前,考生务必将自己姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 3.考试结束,监考人将本试卷和答题卡一并收回. 参考公式: 三角函数的积化和差公式: 正棱台、圆台的侧面积公式 其中、分别表示上、下底面 周长,表示斜高或母线长. 球体的体积公式:,其中R表示球的半径. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的. 1.设集合等于 ( ) A. B. C. D. 2.设,则 ( ) A.y3>y1>y2 B.y2>y1>y3 C.y1>y2>y3 D.y1>y3>y2 3.“”是“”的 ( ) A.必要非充分条件 B.充分非必要条件 C.充分必要条件 D.既非充分又非必要条件 4.已知α,β是平面,m,n是直线.下列命题中不正确的是 ( ) A.若m∥α,α∩β=n,则m//n B.若m∥n,α∩β=n,则n⊥α C.若m⊥α,m⊥β,则α∥β D.若m⊥α,,则α⊥β 5.如图,直线过椭圆的左焦点F1和 一个顶点B,该椭圆的离心率为 ( ) A. B. C. D. 6.若且的最小值是 ( ) A.2 B.3 C.4 D.5 7.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为 ( ) A. B. C. D. 8.若数列的通项公式是,则等于( ) A. B. C. D. 9.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上, 其中黄瓜必须种植,不同的种植方法共有 ( ) A.24种 B.18种 C.12种 D.6种 10.某班试用电子投票系统选举班干部候选人.全班k名同学都有选举权和被选举权,他们的编号分别为1,2,…,k,规定:同意按“1”,不同意(含弃权)按“0”,令 其中i=1,2,…,k,且j=1,2,…,k,则同时同意第1,2号同学当选的人数为( ) A. B. C. D. 第Ⅱ卷(非选择题 共100分) 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 11.已知某球体的体积与其表面积的数值相等,则此球体的半径为 12.函数中, 是偶函数. 13.以双曲线右顶点为顶点,左焦点为焦点的抛物线的方程是 14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为 三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分) 已知函数 (Ⅰ)求的最小正周期; (Ⅱ)求的最大值、最小值. 16.(本小题满分13分) 已知数列是等差数列,且 (Ⅰ)求数列的通项公式; (Ⅱ)令求数列前n项和的公式. 17.(本小题满分15分) 如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AB=a. (Ⅰ)求证:直线A1D⊥B1C1; (Ⅱ)求点D到平面ACC1的距离; (Ⅲ)判断A1B与平面ADC的位置关系, 并证明你的结论. 18.(本小题满分15分) 如图,A1,A为椭圆的两个顶点,F1,F2为椭圆的两个焦点. (Ⅰ)写出椭圆的方程及准线方程; (Ⅱ)过线段OA上异于O,A的任一点K作OA的垂线,交椭圆于P,P1两点,直线 A1P与AP1交于点M. 求证:点M在双曲线上. 19.(本小题满分14分) 有三个新兴城镇,分别位于A,B,C三点处,且AB=AC=13km,BC=10km.今计划合建一个中心医院,为同时方便三镇,准备建在BC的垂直平分线上的P点处,(建立坐标系如图) (Ⅰ)若希望点P到三镇距离的平方和为最小, 点P应位于何处? (Ⅱ)若希望点P到三镇的最远距离为最小, 点P应位于何处? 20.(本小题满分14分) 设是定义在区间上的函数,且满足条件: (i) (ii)对任意的 (Ⅰ)证明:对任意的 (Ⅱ)判断函数是否满足题设条件; (Ⅲ)在区间[-1,1]上是否存在满足题设条件的函数,且使得对任意的 若存在,请举一例:若不存在,请说明理由. 一、选择题:本题考查基本知识和基本运算. 每小题5分,满分50分. 1.A 2.D 3.A 4.A 5.D 6.B 7.C 8.B 9.B 10.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 11.3 12. 13. 14. 三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤. 15.本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13分. (Ⅰ)解:因为 所以的最小正周期 (Ⅱ)解:因为所以的最大值为,最小值为- 16.本小题主要考查等差、等比数列等基本知识,考查综合运用数学知识和方法解决问题的能力.满分13分. (Ⅰ)解:设数列公差为,则 又 所以 (Ⅱ)解:由得 ① ② 将①式减去②式,得 所以 17.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体积等基本知识,考查空间想象能力和逻辑推理能力. 满分15分. (Ⅰ)证法一:∵点D是正△ABC中BC边的中点,∴AD⊥BC, 又A1A⊥底面ABC,∴A1D⊥BC ,∵BC∥B1C1,∴A1D⊥B1C1. 证法二:连结A1C1,则A1C=A1B. ∵点D是正△A1CB的底边中BC的中点, ∴A1D⊥BC ,∵BC∥B1C1,∴A1D⊥B1C1. (Ⅱ)解法一:作DE⊥AC于E, ∵平面ACC1⊥平面ABC, ∴DE⊥平面ACC1于E,即DE的长为点D到平面ACC1的 距离. 在Rt△ADC中,AC=2CD= ∴所求的距离 解法二:设点D到平面ACC1的距离为, ∵体积 即点D到平面ACC1的距离为. (Ⅲ)答:直线A1B//平面ADC1,证明如下: 证法一:如图1,连结A1C交AC1于F,则F为A1C的中点,∵D是BC的中点,∴DF∥A1B, 又DF 平面ADC1,A1B平面ADC1,∴A1B∥平面ADC1. 证法二:如图2,取C1B1的中点D1,则AD∥A1D1,C1D∥D1B, ∴AD∥平面A1D1B,且C1D∥平面A1D1B, ∴平面ADC1∥平面A1D1B,∵A1B平面A1D1B,∴A1B∥平面ADC1. 18.本小主要考查直线、椭圆和双曲线等基本知识,考查分析问题和解决问题的能力.满分15分. (Ⅰ)解:由图可知, 该椭圆的方程为 准线方程为 (Ⅱ)证明:设K点坐标,点P、P1的坐标分别记为, 其中则……① 直线A1P,P1A的方程分别为: ……② ……③ ②式除以③式得化简上式得代入②式得 于是,直线A1P与AP1的交点M的坐标为 因为 所以,直线A1P与AP1的交点M在双曲线. 19.本小题主要考查函数,不等式等基本知识,考查运用数学知识分析问题和解决问题的能力.满分14分. (Ⅰ)解:设P的坐标为(0,),则P至三镇距离的平方和为 所以,当时,函数取得最小值. 答:点P的坐标是 (Ⅱ)解法一:P至三镇的最远距离为 由解得记于是 因为在[上是增函数,而上是减函数. 所以时,函数取得最小值. 答:点P的坐标是 解法二:P至三镇的最远距离为 由解得记于是 函数的图象如图,因此, 当时,函数取得最小值.答:点P的坐标是 解法三:因为在△ABC中,AB=AC=13,且, 所以△ABC的外心M在线段AO上,其坐标为, 且AM=BM=CM. 当P在射线MA上,记P为P1;当P在射线 MA的反向延长线上,记P为P2, 这时P到A、B、C三点的最远距离为 P1C和P2A,且P1C≥MC,P2A≥MA,所以点P与外心M 重合时,P到三镇的最远距离最小. 答:点P的坐标是 20.本小题考查函数、不等式等基本知识,考查综合运用数学知识分析问题和解决问题的能力.满分14分.(Ⅰ)证明:由题设条件可知,当时,有 即 (Ⅱ)答:函数满足题设条件.验证如下: 对任意的, 当 当 当不妨设 有 所以,函数满足题设条件. (Ⅲ)答:这样满足的函数不存在.理由如下: 假设存在函数满足条件,则由得① 由于对任意的,都有 所以,② ①与②矛盾,因此假设不成立,即这样的函数不存在.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2003 北京 高考 文科 数学 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文