1998年西藏高考文科数学真题及答案.doc
《1998年西藏高考文科数学真题及答案.doc》由会员分享,可在线阅读,更多相关《1998年西藏高考文科数学真题及答案.doc(10页珍藏版)》请在咨信网上搜索。
1998年西藏高考文科数学真题及答案 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试120分钟. 第Ⅰ卷(选择题共65分) 一.选择题:本大题共15小题;第(1)-(10)题每小题4分,第(11)-第(15)题每小题5分,65分.在每小题给出四项选项,只一项符合题目要求的 (1) sin600º ( ) (A) (B) - (C) (D) - (2) 函数y=a|x|(a>1)的图像是 ( ) (3) 已知直线x=a(a>0)和圆(x-1)2+y2=4相切,那么a的值是 ( ) (A) 5 (B) 4 (C) 3 (D) 2 (4) 两条直线A1x+B1y+C1=0,A2x+B2y+C2=0垂直的充要条件是 ( ) (A) A1A2+B1B2=0 (B) A1A2-B1B2=0 (C) (D) (5) 函数f(x)=( x≠0)的反函数f-1(x)= ( ) (A) x(x≠0) (B) (x≠0) (C) -x(x≠0) (D) -(x≠0) (6) 已知点P(sinα-cosα,tgα)在第一象限,则[ 0,2π]内α的取值范围是 ( ) (A) ()∪() (B) ()∪() (C) ()∪() (D) ()∪() (7) 已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面积展开图扇形的圆心角为 ( ) (A) 120º (B) 150º (C) 180º (D) 240º (8) 复数-i的一个立方根是i,它的另外两个立方根是 ( ) (A)I (B) -I (C) ±I (D) ±i (9) 如果棱台的两底面积是S,S′,中截面的面积是S0,那么 ( ) (A) 2 (B) S0= (C) 2S0=S+S′ (D) (10) 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共 ( ) (A) 6种 (B) 12种 (C) 18种 (D) 24种 (11) 向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图像如右图所示,那么水瓶的形状是 ( ) (12) 椭圆=1的焦点为F1,点P在椭圆上,如果线段PF1的中点M在y轴上,那么点M的纵坐标是 ( ) (A) ± (B) ± (C) ± (D) ± (13) 球面上有3个点,其中任意两点的球面距离都等于大圆周长为,经过这3个点的小圆的周长为4π,那么这个球的半径为 ( ) (A) 4 (B)2 (C) 2 (D) (14) 一个直角三角形三内角的正弦值成等比数列,其最小内角的正弦值为 ( ) (A) (B) (C) (D) (15) 等比数列{an}的公比为-,前n项的和Sn满足Sn=,那么的值为 ( ) (A) (B)± (C) (D) 二.填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. (16) 设圆过双曲线的一个顶点和一个焦点,圆心在双曲线上,则圆心到双曲线中心距离是__________ (17) (x+2)10(x2-1)的展开的x10系数为____________(用数字作答) (18) 如图,在直四棱柱A1B1C1D1-ABCD中,当底面四边形ABCD满足条件____________时,有A1C⊥B1D1.(注:填上你认为正确的一种条件即可,不必考试所有可能的情形) (19) 关于函数f (x)=4sin(2x+)(x∈R),有下列命题 ①y=f (x)的表达式可改写为y=4cos(2x-);②y=f (x)是以2π为最小正周期的周期函数; ③y=f (x)的图像关于点对称; ④y=f (x)的图像关于直线x=-对称. 其中正确的命题的序号是______ (注:把你认为正确的命题的序号都填上.) 三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤. (20) (本小题满分10分) 设a≠b,解关于x的不等式a2x+b2(1-x)≥[ax+b(1-x)]2. 21) (本小题满分11分) 在△ABC中,a,b,c分别是角A,B,C的对边,设a+c=2b,A-C=,求sinB的值.以下公式供解题时参考: , , , . (22) (本小题满分12分) 如图,直线l1和l2相交于点M,l1 ⊥l2,点N∈l1.以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线C的方程. (23) (本小题满分12分) 已知斜三棱柱ABC-A1 B1 C1的侧面A1 ACC1与底面ABC垂直,∠ABC=90º,BC=2,AC=2,且AA1 ⊥A1C,AA1= A1 C1. (Ⅰ)求侧棱A1A与底面ABC所成角的大小; (Ⅱ)求侧面A1 ABB1 与底面ABC所成二面角的大小; (Ⅲ)求侧棱B1B和侧面A1 ACC1的距离. (24) (本小题满分12分) 如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱.污水从A孔流入,经沉淀后从B孔流出.设箱体的长度为a米,高度为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60平方米.问当a,b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计). (25) (本小题满分12分) 已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=100. (Ⅰ)求数列{bn}的能项bn; (Ⅱ)设数列{an}的通项an =lg(1+),记Sn是数列{an}的前n项的和.试比较Sn与lgbn+1的大小,并证明你的结论. 1998年普通高等学校招生全国统一考试 数学试题(文史类)参考解答及评分标准 一.选择题:本题考查基本知识和基本运算.第(1)-(10)题每小题4分,第(11)-(15)题每小题5分.满分65分. (1) D (2) B (3) C (4) A (5) B (6) B (7) C (8) D (9) A (10) B (11) B (12) A (13) B (14) C (15) D 二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分. (16) (17) -5120 (18) AC⊥BD,或任何能推导出这个条件的其他条件.例如ABCD是正方形,菱形等 (19)①,③注:第(19)题多填、漏填的错填均给0分. 三.解答题: (20)本小题主要考查不等式基本知识,不等式的解法.满分10分. 解:将原不等式化为 (a2-b2)x+b2≥(a-b)2x2+2(a-b)bx+b2, 移项,整理后得 (a-b)2(x2-x) ≤0, ∵ a≠b 即 (a-b)2>0, ∴ x2-x≤0, 即 x(x-1) ≤0. 解此不等式,得解集 {x|0≤x≤1}. (21) 本小题考查正弦定理,同角三角函数基本公式,诱导公式等基础知识,考查利用三角公式进行恒等变形的技能及运算能力.满分11分. 解:由正弦定理和已知条件a+c=2b得 sinA+sinC=2sinB. 由和差化积公式得. 由A+B+C=π,得 =, 又A-C=,得cos=sinB, ∴ cos=2sincos. ∵ 0<<, ≠0, ∴sin=, 从而cos== ∴ sinB== (22) 本小题主要考查根据所给条件选择适当的坐标系,求曲线方程的解析几何的基本思想.考查抛物线的概念和性质,曲线与方程的关系以及综合运用知识的能力.满分12分. 解法一:如图建立坐标系,以l1为x轴,MN的垂直平分线为y轴,点O为坐标原点. 依题意知:曲线段C是以点N为焦点,以l2为准线的抛线段的一段,其中A、B分别为C的端点. 设曲线段C的方程为 y2=2px (p>0),(xA≤x≤xB,y>0),其中xA,xB分别为A,B的横坐标,P=|MN|. 所以 M (-,0),N (,0). 由 |AM|=,|AN|=3得 (xA+)2+2PxA=17, ① (xA-)2+2PxA=9. ② 由①、②两式联立解得xA=,再将其代入①式并由p>0解得 或. 因为△AMN是锐角三角形,所以>xA,故舍去. ∴ P=4,xA=1. 由点B在曲线段C上,得xB=|BN|-=4. 综上得曲线段C的方程为y2=8x (1≤x≤4,y>0). 解法二:如图建立坐标系,分别以l1、l2为x、y轴,M为坐标原点. 作AE⊥l1,AD⊥l2,BF⊥l2,垂足分别为E、D、F. 设 A (xA,yA)、B (xB,yB)、N (xN,0). 依题意有 xA=|ME|=|DA|=|AN|=3, yA=|DM|==2,由于△AMN为锐角三角形,故有 xN=|AE|+|EN|=4. =|ME|+=4 XB=|BF|=|BN|=6. 设点P (x,y)是曲线段C上任一点,则由题意知P属于集合 {(x,y)|(x-xN)2+y2=x2,xA≤x≤xB,y>0}. 故曲线段C的方程 y2=8(x-2)(3≤x≤6,y>0). (23) 本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,棱柱的性质,空间的角和距离的概念,逻辑思维能力、空间想象能力及运算能力.满分12分. 注:题中赋分为得到该结论时所得分值,不给中间分. 解:(Ⅰ)作A1D⊥AC,垂足为D,由面A1ACC1⊥面ABC,得A1D⊥面ABC, ∴ ∠A1AD为A1A与面ABC所成的角. ∵ AA1⊥A1C,AA1=A1C, ∴ ∠A1AD=45º为所求. (Ⅱ)作DE⊥AB,垂足为E,连A1E,则由A1D⊥面ABC,得A1E⊥AB. ∴∠A1ED是面A1ABB1与面ABC所成二面角的平面角. 由已知,AB⊥BC,得ED∥BC.又D是AC的中点,BC=2,AC=2, ∴ DE=1,AD=A1D=,tgA1ED==. 故∠A1ED=60º为所求. (Ⅲ) 作BF⊥AC,F为垂足,由面A1ACC1⊥面ABC,知BF⊥面A1ACC1. ∵ B1B∥面A1ACC1, ∴ BF的长是B1B和面A1ACC1的距离. 在Rt△ABC中,, ∴ 为所求. (24) 本小题主要考查综合应用所学数学知识、思想和方法解决实际问题的能力,考查建立函数关系、不等式性质、最大值、最小值等基础知识.满分12分. 解法一:设y为流出的水中杂质的质量分数,则y=,其中k>0为比例系数,依题意,即所求的a,b值使y值最小. 根据题设,有4b+2ab+2a=60(a>0,b>0), 得 (0<a<30=, ① 于是 当a+2=时取等号,y达最小值. 这时a=6,a=-10(舍去). 将a=6代入①式得b=3. 故当a为6米,b为3米时,经沉淀后流出的水中该杂质的质量分数最小. 解法二:依题意,即所求的a,b的值使ab最大. 由题设知 4a+2ab+2a=60 (a>0,b>0) 即 a+2b+ab=30 (a>0,b>0). ∵ a+2b≥2, ∴ 2+ab≤30, 当且仅当a=2b时,上式取等号. 由a>0,b>0,解得0<ab≤18. 即当a=2b时,ab取得最大值,其最大值18. ∴ 2b2=18.解得b=3,a=6. 故当a为6米,b为3米时,经沉淀后流出的水中该杂质的质量分数最小. (25) 本小题主要考查等差数列基本概念及其通项求法,考查对数函数性质,考查归纳,推理能力以及用数学归纳法进行论证的能力.满分12分. 解:(Ⅰ)设数列工{bn}的公差为d,由题意得 b1=1, 10b1+=100. 解得 b1=1, d=2. ∴ bn=2n-1. (Ⅱ)由bn=2n-1,知 Sn=lg(1+1)+lg(1+)+…+lg(1+) =lg[(1+1)(1+)· … ·(1+)], lgbn+1=lg. 因此要比较Sn与lgbn+1的大小,可先比较(1+1)(1+)· … ·(1+)与的大小. 取n=1有(1+1)>, 取n=2有(1+1)(1+)> 由此推测(1+1)(1+)· … ·(1+)>. ① 若①式成立,则由对数函数性质可判定: Sn>lgbn+1. 下面用数学归纳法证明①式. (i)当n=1时已验证①式成立. (ii)假设当n=k (k≥1)时,①式成立,即 (1+1)(1+)· … ·(1+)>, 那么,当n=k+1时, (1+1)(1+)· … ·(1+)(1+) >(1+) =(2k+2). ∵ [(2k+2)]2-[]2 = =>0, ∴ (2k+2) >=. 因而 (1+1)(1+)· … ·(1+)(1+)>. 这就是说①式当n=k+1时也成立. 由(i),(ii)知①式对任何正整数n都成立.由此证得:Sn>lgbn+1.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1998 西藏 高考 文科 数学 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文