七年级下册数学期中试卷及答案完整.doc
《七年级下册数学期中试卷及答案完整.doc》由会员分享,可在线阅读,更多相关《七年级下册数学期中试卷及答案完整.doc(21页珍藏版)》请在咨信网上搜索。
七年级下册数学期中试卷及答案完整 一、选择题 1.的平方根是() A. B. C.± D.± 2.下列图案中,是通过下图平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中,点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列四个命题:①5是25的算术平方根;②的平方根是-4;③经过直线外一点,有且只有一条直线与这条直线平行;④同旁内角互补.其中真命题的个数是( ). A.0个 B.1个 C.2个 D.3个 5.已知,如图,点D是射线上一动点,连接,过点D作交直线于点E,若,,则的度数为( ) A. B. C.或 D.或 6.下列运算正确的是( ) A. B. C. D. 7.如图,ABCD为一长方形纸片,AB∥CD,将ABCD沿E折叠,A、D两点分别与A′、D′对应,若∠CFE=2∠CFD′,则∠AEF的度数是( ) A.60° B.80° C.75° D.72° 8.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)……则点A2021的坐标为( ) A.(505,﹣504) B.(506,﹣505) C.(505,﹣505) D.(﹣506,506) 二、填空题 9.若,则的值为 10.点关于轴对称的点的坐标为_________. 11.如图,AD、AE分别是△ABC的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______. 12.如图,直线m与∠AOB的一边射线OB相交,∠3=120°,向上平移直线m得到直线n,与∠AOB的另一边射线OA相交,则∠2-∠1=_______º. 13.如图,有一条直的宽纸带,按图折叠,则的度数等于______. 14.对于任意有理数a,b,规定一种新的运算a⊙b=a(a+b)﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____ 15.如图,直角坐标系中、两点的坐标分别为,,则该坐标系内点的坐标为__________. 16.如图,在直角坐标系中,A(1,3),B(2,0),第一次将△AOB变换成△OA1B1,A1(2,3),B1(4,0);第二次将△OA1B1变换成△OA2B2,A2(4,3),B2(8,0),第三次将△OA2B2变换成△OA3B3,……,则B2021的横坐标为______. 三、解答题 17.计算题: (1); (2) 18.求下列各式中的 . (1) (2) 19.已知:,,垂足分别为B,D,, 求证:, 请你将证明过程补充完整. 证明:∵,,垂足分别为B,D(已知). ∴(垂直定义). ∴______________∥______________() ∴______________() 又∵(已知) ∴∠2=(), ∴______________∥______________() ∴() 20.如图,在平面直角坐标系中,三角形三个顶点的坐标分别为.点P是三角形的边上任意一点,三角形经过平移后得到三角形,已知点的对应点. (1)在图中画出平移后的三角形,并写出点的坐标; (2)求三角形的面积. 21.阅读下面的文字,解答问题. 大家知道是无理数,面无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于,所以的整数部分为1.将减去其整数部分1,差就是小数部分.根据以上的内容,解答下面的问题: (1)的整数部分是___________,小数部分是___________; (2)若设整数部分是,小数部分是,求的值. 22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究. (1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽; (2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由. 23.如图,已知//,点是射线上一动点(与点不重合),分别平分和,分别交射线于点. (1)当时,的度数是_______; (2)当,求的度数(用的代数式表示); (3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律. (4)当点运动到使时,请直接写出的度数. 24.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”. (1)如图1,在中,,是的角平分线,求证:是“准互余三角形”; (2)关于“准互余三角形”,有下列说法: ①在中,若,,,则是“准互余三角形”; ②若是“准互余三角形”,,,则; ③“准互余三角形”一定是钝角三角形. 其中正确的结论是___________(填写所有正确说法的序号); (3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据平方根的定义开平方求解即可; 【详解】 解:∵, ∴的平方根是; 故答案选C. 【点睛】 本题主要考查了平方根的计算,准确计算是解题的关键. 2.C 【分析】 根据平移的性质,即可解答. 【详解】 由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现. 故选C 【点睛】 本题考查了图形的平移,图形的平移只改变图形的位置,而不改变 解析:C 【分析】 根据平移的性质,即可解答. 【详解】 由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现. 故选C 【点睛】 本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,掌握平移的性质是解题的关键. 3.B 【分析】 根据各象限内点的坐标特征解答. 【详解】 解:点P(-5,4)位于第二象限. 故选:B. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.C 【分析】 根据相关概念逐项分析即可. 【详解】 ①5是25的算术平方根,故原命题是真命题; ②的平方根是,故原命题是假命题; ③经过直线外一点,有且只有一条直线与这条直线平行,故原命题是真命题; ④两直线平行,同旁内角互补,故原命题是假命题; 故选:C. 【点睛】 本题考查命题真假的判断,涉及到平方根,平行公理,以及平行线的性质,熟练掌握基本定理和性质是解题关键. 5.D 【分析】 分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE+∠CDE可求出∠ADC的度数;当点D在线段AB的延长线上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE-∠CDE可求出∠ADC的度数.综上,此题得解. 【详解】 解:当点D在线段AB上时,如图1所示. ∵DE∥BC, ∴∠ADE=∠ABC=84°, ∴∠ADC=∠ADE+∠CDE=84°+20°=104°; 当点D在线段AB的延长线上时,如图2所示. ∵DE∥BC, ∴∠ADE=∠ABC=84°, ∴∠ADC=∠ADE-∠CDE=84°-20°=64°. 综上所述:∠ADC=104°或64°. 故选:D. 【点睛】 本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出∠ADC的度数是解题的关键. 6.C 【分析】 利用立方根和算术平方根的定义,以及二次根式的化简得到结果,即可做出判断. 【详解】 解:A、,故本选项错误; B、,故本选项错误; C、,故本选项正确; D、,故本选项错误; 故选:C. 【点睛】 此题考查了立方根和算术平方根,以及二次根式的化简,熟练掌握立方根和算术平方根的定义,二次根式的化简方法是解本题的关键. 7.D 【分析】 先根据平行线的性质,由AB∥CD,得到∠CFE=∠AEF,再根据翻折的性质可得∠DFE=∠EFD′,由平角的性质可求得∠CFD′的度数,即可得出答案. 【详解】 解:∵AB∥CD, ∴∠CFE=∠AEF, 又∵∠DFE=∠EFD′,∠CFE=2∠CFD′, ∴∠DFE=∠EFD′=3∠CFD′, ∴∠DFE+∠CFE=3∠CFD′+2∠CFD′=180°, ∴∠CFD′=36°, ∴∠AEF=∠CFE=2∠CFD′=72°. 故选:D. 【点睛】 本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键. 8.B 【分析】 求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第 解析:B 【分析】 求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第四象限,根据推导可得出结论; 【详解】 由题可知, 第一象限的点:,…角标除以4余数为2; 第二象限的点:,,…角标除以4余数为3; 第三象限的点:,,…角标除以4余数为0; 第四象限的点:,,…角标除以4余数为1; 由上规律可知:, ∴点在第四象限, 又∵,, 即横坐标为正数,数字为角标除以4的商加1;纵坐标为负数,数字为角标除以4的商, ∴. 故选:B. 【点睛】 本题主要考查了点的坐标规律,准确理解是解题的关键. 二、填空题 9.-1 【解析】 解:有题意得,,,,则 解析:-1 【解析】 解:有题意得,,,,则 10.【分析】 关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解. 【详解】 解:由点关于轴对称点的坐标为:, 故答案为. 【点睛】 本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握 解析: 【分析】 关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解. 【详解】 解:由点关于轴对称点的坐标为:, 故答案为. 【点睛】 本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键. 11.; 【详解】 解:由题意可知,∠B=60°,∠C=70°,所以°, 所以°, 在三角形BAE中,°,所以∠EAD=5° 故答案为:5°. 【点睛】 本题属于对角平分线和角度基本知识的变换求解. 解析:; 【详解】 解:由题意可知,∠B=60°,∠C=70°,所以°, 所以°, 在三角形BAE中,°,所以∠EAD=5° 故答案为:5°. 【点睛】 本题属于对角平分线和角度基本知识的变换求解. 12.60 【分析】 延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论. 【详解】 解:延长BO交直线n于点C,如图, ∵直线m向上平移直 解析:60 【分析】 延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论. 【详解】 解:延长BO交直线n于点C,如图, ∵直线m向上平移直线m得到直线n, ∴m∥n, ∴∠ACB=∠1, ∵∠3=120°, ∴∠AOC=60° ∵∠2=∠ACO+∠AOC=∠1+60°, ∴∠2-∠1=60°. 故答案为60. 【点睛】 本题考查了平移的性质,平行线的性质,以及三角形外角的性质,作辅助线构造三角形是解答此题的关键. 13.75° 【分析】 由图形可得AD∥BC,可得∠CBF=30°,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案. 【详解】 解:∵AD∥BC, ∴∠CBF=∠DEF=30°, ∵AB为 解析:75° 【分析】 由图形可得AD∥BC,可得∠CBF=30°,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案. 【详解】 解:∵AD∥BC, ∴∠CBF=∠DEF=30°, ∵AB为折痕, ∴2∠α+∠CBF=180°, 即2∠α+30°=180°, 解得∠α=75°. 故答案为:75°. 【点睛】 本题考查了平行线的性质,图形的翻折问题;找着相等的角,利用平角列出方程是解答翻折问题的关键. 14.-9 【分析】 直接利用已知运算法则计算得出答案. 【详解】 (﹣2)⊙6 =﹣2×(﹣2+6)﹣1 =﹣2×4﹣1 =﹣8﹣1 =﹣9. 故答案为﹣9. 【点睛】 此题考察新定义形式的有理数计算, 解析:-9 【分析】 直接利用已知运算法则计算得出答案. 【详解】 (﹣2)⊙6 =﹣2×(﹣2+6)﹣1 =﹣2×4﹣1 =﹣8﹣1 =﹣9. 故答案为﹣9. 【点睛】 此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可. 15.【分析】 首先根据A、B点坐标确定原点位置,然后再建立坐标系,再确定C点坐标即可. 【详解】 解:点C的坐标为(-1,3), 故答案为:(-1,3). 【点睛】 此题主要考查了点的坐标,关键是正 解析: 【分析】 首先根据A、B点坐标确定原点位置,然后再建立坐标系,再确定C点坐标即可. 【详解】 解:点C的坐标为(-1,3), 故答案为:(-1,3). 【点睛】 此题主要考查了点的坐标,关键是正确建立坐标系. 16.【分析】 根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解. 【详解】 解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可 解析: 【分析】 根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解. 【详解】 解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可得:, ∴B2021的横坐标为; 故答案为. 【点睛】 本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律. 三、解答题 17.(1);(2) 【分析】 (1)先计算被开方数,再利用算术平方根的含义求解即可得到答案; (2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案. 【详解】 解 解析:(1);(2) 【分析】 (1)先计算被开方数,再利用算术平方根的含义求解即可得到答案; (2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案. 【详解】 解:(1), (2) 【点睛】 本题考查的是算术平方根的含义,含乘方的有理数的混合运算,掌握以上知识是解题的关键. 18.(1)或;(2). 【分析】 (1)先将方程进行变形,再利用平方根的定义进行求解即可; (2)先将方程进行变形,再利用立方根的定义进行求解即可. 【详解】 解:(1), ∴, ∴; (2), ∴, 解析:(1)或;(2). 【分析】 (1)先将方程进行变形,再利用平方根的定义进行求解即可; (2)先将方程进行变形,再利用立方根的定义进行求解即可. 【详解】 解:(1), ∴, ∴; (2), ∴, ∴. 【点睛】 本题考查了平方根与立方根,理解相关定义是解决本题的关键. 19.答案见详解. 【分析】 根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案. 【详解】 证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己 解析:答案见详解. 【分析】 根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案. 【详解】 证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己知), ∴∠ABC=∠ADE=90°(垂直定义), ∴BC∥DE(同位角相等,两直线平行), ∴∠1=∠EBC(两直线平行,内错角相等), 又∵∠l=∠2 (已知), ∴∠2=∠EBC(等量代换), ∴BE∥GF(同位角相等,两直线平行), ∴∠BEC+∠FGE=180°(两直线平行,同旁内角互补). 【点睛】 本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 20.(1)作图见解析,;(2)7 【分析】 (1)直接利用P点平移变化规律得出A′、B′、C′的坐标;直接利用得出各对应点位置进而得出答案; (2)利用三角形ABC所在矩形面积减去周围三角形面积进而得出 解析:(1)作图见解析,;(2)7 【分析】 (1)直接利用P点平移变化规律得出A′、B′、C′的坐标;直接利用得出各对应点位置进而得出答案; (2)利用三角形ABC所在矩形面积减去周围三角形面积进而得出答案. 【详解】 解:(1)∵P到点的对应点,横坐标向左平移了两个单位,纵坐标向上平移了3个单位. ∵, ∴, 如图所示,三角形A′B′C′即为所求, (2)三角形ABC的面积为:4×5−×1×3−×2×4−×3×5=7. 【点睛】 此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键. 21.(1)2,;(2). 【分析】 (1)利用求解; (2)由于,则,,然后计算. 【详解】 解:(1)的整数部分是2,小数部分是; (2), 而整数部分是,小数部分是, ,, . 【点睛】 本题考查了 解析:(1)2,;(2). 【分析】 (1)利用求解; (2)由于,则,,然后计算. 【详解】 解:(1)的整数部分是2,小数部分是; (2), 而整数部分是,小数部分是, ,, . 【点睛】 本题考查了估算无理数的大小,熟悉相关性质是解题得关键. 22.(1)长为,宽为;(2)正确,理由见解析 【分析】 (1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可; (2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程 解析:(1)长为,宽为;(2)正确,理由见解析 【分析】 (1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可; (2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积. 【详解】 解:(1)设长为3x,宽为2x, 则:3x•2x=30, ∴x=(负值舍去), ∴3x=,2x=, 答:这个长方形纸片的长为,宽为; (2)正确.理由如下: 根据题意得:, 解得:, ∴大正方形的面积为102=100. 【点睛】 本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键. 23.(1)120°;(2)90°-x°;(3)不变,;(4)45° 【分析】 (1)由平行线的性质:两直线平行同旁内角互补可得; (2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ 解析:(1)120°;(2)90°-x°;(3)不变,;(4)45° 【分析】 (1)由平行线的性质:两直线平行同旁内角互补可得; (2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°; (3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1; (4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行线的性质可得∠A+∠ABN=90°,即可得出答案. 【详解】 解:(1)∵AM∥BN,∠A=60°, ∴∠A+∠ABN=180°, ∴∠ABN=120°; (2)∵AM∥BN, ∴∠ABN+∠A=180°, ∴∠ABN=180°-x°, ∴∠ABP+∠PBN=180°-x°, ∵BC平分∠ABP,BD平分∠PBN, ∴∠ABP=2∠CBP,∠PBN=2∠DBP, ∴2∠CBP+2∠DBP=180°-x°, ∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°; (3)不变,∠ADB:∠APB=. ∵AM∥BN, ∴∠APB=∠PBN,∠ADB=∠DBN, ∵BD平分∠PBN, ∴∠PBN=2∠DBN, ∴∠APB:∠ADB=2:1, ∴∠ADB:∠APB=; (4)∵AM∥BN, ∴∠ACB=∠CBN, 当∠ACB=∠ABD时,则有∠CBN=∠ABD, ∴∠ABC+∠CBD=∠CBD+∠DBN, ∴∠ABC=∠DBN, ∵BC平分∠ABP,BD平分∠PBN, ∴∠ABP=2∠ABC,∠PBN=2∠DBN, ∴∠ABP=∠PBN=2∠DBN=∠ABN, ∵AM∥BN, ∴∠A+∠ABN=180°, ∴∠A+∠ABN=90°, ∴∠A+2∠DBN=90°, ∴∠A+∠DBN=(∠A+2∠DBN)=45°. 【点睛】 本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键. 24.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110° 【分析】 (1)由和是的角平分线,证明即可; (2)根据“准互余三角形”的定义逐个判断即可; (3)根据“准互余三角 解析:(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110° 【分析】 (1)由和是的角平分线,证明即可; (2)根据“准互余三角形”的定义逐个判断即可; (3)根据“准互余三角形”的定义,分类讨论:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案. 【详解】 (1)证明:∵在中,, ∴, ∵BD是的角平分线, ∴, ∴, ∴是“准互余三角形”; (2)①∵, ∴, ∴是“准互余三角形”, 故①正确; ②∵, , ∴, ∴不是“准互余三角形”, 故②错误; ③设三角形的三个内角分别为,且, ∵三角形是“准互余三角形”, ∴或, ∴, ∴, ∴“准互余三角形”一定是钝角三角形, 故③正确; 综上所述,①③正确, 故答案为:①③; (3)∠APB的度数是10°或20°或40°或110°; 如图①, 当2∠A+∠ABC=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A=20°, ∴∠APB=110°; 如图②,当∠A+2∠APB=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A+∠APB=50°, ∴∠APB=40°; 如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠APB=20°; 如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A+∠APB=50°, 所以∠A=40°, 所以∠APB=10°; 综上,∠APB的度数是10°或20°或40°或110°时,是“准互余三角形”. 【点睛】 本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学 期中 试卷 答案 完整
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文