2005年北京高考理科数学真题及答案.doc
《2005年北京高考理科数学真题及答案.doc》由会员分享,可在线阅读,更多相关《2005年北京高考理科数学真题及答案.doc(10页珍藏版)》请在咨信网上搜索。
2005年北京高考理科数学真题及答案 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷 1至2页,第II卷3至9页,共150分。考试时间120分钟。考试结束,将本试卷和答题卡一并交回。 第I卷(选择题共40分) 注意事项: 1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。不能答在试卷上。 一、本大题共8小题.每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项. (1)设全集U=R,集合M={x| x>1,P={x| x2>1},则下列关系中正确的是 (A)M=P (B)PM (C)MP ( D) (2)“m=”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的 (A)充分必要条件 (B)充分而不必要条件 (C)必要而不充分条件 (D)既不充分也不必要条件 (3)若,且,则向量与的夹角为 (A)30° (B)60° (C)120° (D)150° (4)从原点向圆 x2+y2-12y+27=0作两条切线,则该圆夹在两条切线间的劣弧长为 (A)π (B)2π (C)4π (D)6π (5)对任意的锐角α,β,下列不等关系中正确的是 (A)sin(α+β)>sinα+sinβ (B)sin(α+β)>cosα+cosβ (C)cos(α+β)<sinα+sinβ (D)cos(α+β)<cosα+cosβ (6)在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立的是 (A)BC//平面PDF (B)DF⊥平面PA E (C)平面PDF⊥平面ABC (D)平面PAE⊥平面 ABC (7)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为 (A) (B) (C) (D) (8)函数f(x)= (A)在上递增,在上递减 (B)在上递增,在上递减 (C)在上递增,在上递减 (D)在上递增,在上递减 二、填空题:本大题共6小题;每小题5分,共30分。把答案填在题中横线上。 (9)若 , ,且为纯虚数,则实数a的值为 . (10)已知tan=2,则tanα的值为 ,tan的值为 . (11)的展开式中的常数项是 (用数字作答) (12)过原点作曲线y=ex的切线,则切点的坐标为 ,切线的斜率为 . (13)对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论: ①f(x1+x2)=f(x1)·f(x2);② f(x1·x2)=f(x1)+f(x2); ③>0;④. 当f(x)=lgx时,上述结论中正确结论的序号是 . (14)已知n次多项式, 如果在一种算法中,计算(k=2,3,4,…,n)的值需要k-1次乘法,计算的值共需要9次运算(6次乘法,3次加法),那么计算的值共需要 次运算. 下面给出一种减少运算次数的算法:(k=0, 1,2,…,n-1).利用该算法,计算的值共需要6次运算,计算的 值共需要 次运算. 三、解答题:本大题共6小题,共80分。解答应写出文字说明,证明过程或演算步骤。 (15)(本小题共13分) 已知函数f(x)=-x3+3x2+9x+a, (I)求f(x)的单调递减区间; (II)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值. (16)(本小题共14分) 如图, 在直四棱柱ABCD-A1B1C1D1中,AB=AD=2,DC=2,AA1=,AD⊥DC,AC⊥BD, 垂足未E, (I)求证:BD⊥A1C; (II)求二面角A 1-BD-C 1的大小; (III)求异面直线 AD与 BC 1所成角的大小. (17)(本小题共13分) 甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率, (I)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望Eξ; (II)求乙至多击中目标2次的概率; (III)求甲恰好比乙多击中目标2次的概率. (18)(本小题共14分) 如图,直线 l1:y=kx(k>0)与直线l2:y=-kx之间的阴影区域(不含边界)记为W,其左半部分记为W1,右半部分记为W2. (I)分别用不等式组表示W1和W2; (II)若区域W中的动点P(x,y)到l1,l2的距离之积等于d2,求点P的轨迹C的方程; (III)设不过原点O的直线l与(II)中的曲线C相交于M1,M2两点,且与l1,l2分别交于M3,M4两点.求证△OM1M2的重心与△OM3M4的重心重合. (19)(本小题共12分) 设数列{an}的首项a1=a≠,且, 记,n==l,2,3,…·. (I)求a2,a3; (II)判断数列{bn}是否为等比数列,并证明你的结论; (III)求. (20)(本小题共14分) 设f(x)是定义在[0, 1]上的函数,若存在x*∈(0,1),使得f(x)在[0, x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0, 1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间. 对任意的[0,l]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法. (I)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x*,1)为含峰区间; (II)对给定的r(0<r<0.5),证明:存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(I)所确定的含峰区间的长度不大于 0.5+r; (III)选取x1,x2∈(0, 1),x1<x2,由(I)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0.34.(区间长度等于区间的右端点与左端点之差) 参考答案 一、选择题(本大题共8小题,每小题5分,共40分) (1) C (2)B (3)C (4)B (5)D (6)C (7)A (8)A 二、填空题(本大题共6小题,每小题5分,共30分) (9) (10)-;- (11)15 (12)(1, e);e (13)②③ (14)n(n+3);2n 三、解答题(本大题共6小题,共80分) (15)(共13分) 解:(I) f ’(x)=-3x2+6x+9.令f ‘(x)<0,解得x<-1或x>3, 所以函数f(x)的单调递减区间为(-∞,-1),(3,+∞). (II)因为f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a, 所以f(2)>f(-2).因为在(-1,3)上f ‘(x)>0,所以f(x)在[-1, 2]上单调递增,又由于f(x)在[-2,-1]上单调递减,因此f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有 22+a=20,解得 a=-2. 故f(x)=-x3+3x2+9x-2,因此f(-1)=1+3-9-2=-7, 即函数f(x)在区间[-2,2]上的最小值为-7. (16)(共14分) (I)在直四棱柱ABCD-AB1C1D1中, ∵AA1⊥底面ABCD.∴ AC是A1C在平面ABCD上的射影. ∵BD⊥AC.∴ BD⊥A1C; (II)连结A1E,C1E,A1 C1. 与(I)同理可证BD⊥A1E,BD⊥C1E, ∴ ∠A1EC1为二面角A1-BD-C1的平面角. ∵ AD⊥DC,∴ ∠A1D1C1=∠ADC=90°, 又A1D1=AD=2,D1C1= DC=2,AA1=且 AC⊥BD, ∴ A1C1=4,AE=1,EC=3,∴ A1E=2,C1E=2, 在△A1EC1中,A1C12=A1E2+C1E2, ∴ ∠A1EC1=90°, 即二面角A1-BD-C1的大小为90°. (III)过B作 BF//AD交 AC于 F,连结FC1, 则∠C1BF就是AD与BC1所成的角. ∵ AB=AD=2, BD⊥AC,AE=1, ∴ BF=2,EF=1,FC=2,BC=DC,∴ FC1=,BC1=, 在△BFC1 中,,∴ ∠C1BF= 即异面直线AD与BC1所成角的大小为. (17)(共13分) 解:(I)P(ξ=0)=,P(ξ=1)=,P(ξ=2)=, ξ 0 1 2 3 P P(ξ=3)=, ξ的概率分布如下表: Eξ=, (或Eξ=3·=1.5); (II)乙至多击中目标2次的概率为1-=; (III)设甲恰比乙多击中目标2次为事件A,甲恰击中目标2次且乙恰击中目标0次为事件B1,甲恰击中目标 3次且乙恰击中目标 1次为事件B2,则A=B1+B2, B1,B2为互斥事件. 所以,甲恰好比乙多击中目标2次的概率为. (18)(共14分) 解:(I)W1={(x, y)| kx<y<-kx, x<0},W2={(x, y)| -kx<y<kx, x>0}, (II)直线l1:kx-y=0,直线l2:kx+y=0,由题意得 , 即, 由P(x, y)∈W,知k2x2-y2>0, 所以 ,即, 所以动点P的轨迹C的方程为; (III)当直线l与x轴垂直时,可设直线l的方程为x=a(a≠0).由于直线l,曲线C关于x轴对称,且l1与l2关于x轴对称,于是M1M2,M3M4的中点坐标都为(a,0),所以△OM1M2,△OM3M4的重心坐标都为(a,0),即它们的重心重合, 当直线l1与x轴不垂直时,设直线l的方程为y=mx+n(n≠0). 由,得 由直线l与曲线C有两个不同交点,可知k2-m2≠0且 △=>0 设M1,M2的坐标分别为(x1, y1),(x2, y2), 则, , 设M3,M4的坐标分别为(x3, y3),(x4, y4), 由得 从而, 所以y3+y4=m(x3+x4)+2n=m(x1+x2)+2n=y1+y2, 于是△OM1M2的重心与△OM3M4的重心也重合. (19)(共12分) 解:(I)a2=a1+=a+,a3=a2=a+; (II)∵ a4=a3+=a+, 所以a5=a4=a+, 所以b1=a1-=a-, b2=a3-=(a-), b3=a5-=(a-), 猜想:{bn}是公比为的等比数列· 证明如下: 因为bn+1=a2n+1-=a2n-=(a2n-1-)=bn, (n∈N*) 所以{bn}是首项为a-, 公比为的等比数列· (III). (20)(共14分) (I)证明:设x*为f(x) 的峰点,则由单峰函数定义可知,f(x)在[0, x*]上单调递增,在[x*, 1]上单调递减. 当f(x1)≥f(x2)时,假设x*(0, x2),则x1<x2<x*,从而f(x*)≥f(x2)>f(x1), 这与f(x1)≥f(x2)矛盾,所以x*∈(0, x2),即(0, x2)是含峰区间. 当f(x1)≤f(x2)时,假设x*( x2, 1),则x*<≤x1<x2,从而f(x*)≥f(x1)>f(x2), 这与f(x1)≤f(x2)矛盾,所以x*∈(x1, 1),即(x1, 1)是含峰区间. (II)证明:由(I)的结论可知: 当f(x1)≥f(x2)时,含峰区间的长度为l1=x2; 当f(x1)≤f(x2)时,含峰区间的长度为l2=1-x1; 对于上述两种情况,由题意得 ① 由①得 1+x2-x1≤1+2r,即x1-x1≤2r. 又因为x2-x1≥2r,所以x2-x1=2r, ② 将②代入①得 x1≤0.5-r, x2≥0.5-r, ③ 由①和③解得 x1=0.5-r, x2=0.5+r. 所以这时含峰区间的长度l1=l1=0.5+r,即存在x1,x2使得所确定的含峰区间的长度不大于0.5+r. (III)解:对先选择的x1;x2,x1<x2,由(II)可知 x1+x2=l, ④ 在第一次确定的含峰区间为(0, x2)的情况下,x3的取值应满足 x3+x1=x2, ⑤ 由④与⑤可得, 当x1>x3时,含峰区间的长度为x1. 由条件x1-x3≥0.02,得x1-(1-2x1)≥0.02,从而x1≥0.34. 因此,为了将含峰区间的长度缩短到0.34,只要取 x1=0.34,x2=0.66,x3=0.32.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2005 北京 高考 理科 数学 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文