人教版七年级数学下册-实数常考题培优试题.doc
《人教版七年级数学下册-实数常考题培优试题.doc》由会员分享,可在线阅读,更多相关《人教版七年级数学下册-实数常考题培优试题.doc(24页珍藏版)》请在咨信网上搜索。
一、选择题 1.求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,则2S=2+22+23+24+…+22021,因此2S-S=22021-1.仿照以上推理,计算出1+2020+20202+20203+…+20202020的值为( ) A. B. C. D. 2.如图,数轴上点表示的数可能是( ) A. B. C. D. 3.如示意图,小宇利用两个面积为1 dm2的正方形拼成了一个面积为2 dm2的大正方形,并通过测量大正方形的边长感受了dm的大小. 为了感知更多无理数的大小,小宇利用类似拼正方形的方法进行了很多尝试,下列做法不能实现的是( ) A.利用两个边长为2dm的正方形感知dm的大小 B.利用四个直角边为3dm的等腰直角三角形感知dm的大小 C.利用一个边长为dm的正方形以及一个直角边为2dm的等腰直角三角形感知dm的大小 D.利用四个直角边分别为1 dm和3 dm的直角三角形以及一个边长为2 dm的正方形感知dm的大小 4.若的整数部分为a,小数部分为b,则a-b的值为() A. B. C. D. 5.观察下列各等式: …… 根据以上规律可知第11行左起第11个数是( ) A.-130 B.-131 C.-132 D.-133 6.下列说法中,正确的个数是( ). ()的立方根是;()的算术平方根是;()的立方根为;()是的平方根. A. B. C. D. 7.如图,数轴上两点表示的数分别为,点B关于点A的对称点为点C,则点C所表示的数是( ) A. B. C. D. 8.任何一个正整数n都可以进行这样的分解:n=p×q(p,q都是正整数,且p≤q),如果p×q在n的所有分解中两个因数之差的绝对值最小,我们就称p×q是n的黄金分解,并规定:F(n)=,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=,现给出下列关于F(n)的说法:①F(2) =;② F(24)=;③F(27)=3;④若n是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A.1个 B.2个 C.3个 D.4个 9.有一个数阵排列如下: 则第行从左至右第个数为( ) A. B. C. D. 10.数轴上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数线上有一点D,D点所表示的数为d,且|d﹣5|=|d﹣c|,则关于D点的位置,下列叙述正确的是?( ) A.在A的左边 B.介于O、B之间 C.介于C、O之间 D.介于A、C之间 二、填空题 11.用表示一种运算,它的含义是:,如果,那么 __________. 12.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外),重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差:重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是__________. 13.若我们规定表示不小于x的最小整数,例如,,则以下结论:①;②;③的最小值是0;④存在实数x使成立.其中正确的是______.(填写所有正确结论的序号) 14.我们可以用符号f(a)表示代数式.当a是正整数时,我们规定如果a为偶数,f(a)=0.5a;如果a为奇数,f(a)=5a+1.例如:f(20)=10,f(5)=26.设a1=6,a2=f(a1),a3=f(a2)…;依此规律进行下去,得到一列数:a1,a2,a3,a4…(n为正整数),则2a1﹣a2+a3﹣a4+a5﹣a6+…+a2013﹣a2014+a2015=_____. 15.定义一种新运算,其规则是:当时,,当时,,当时,,若,则____________. 16.计算并观察下列算式的结果:,,,,…,则=_______. 17.将1,,,按如图方式排列.若规定,表示第排从左向右第个数,则所表示的数是___________. 18.若+(y+1)2=0,则(x+y)3=_____. 19.定义运算“@”的运算法则为:x@y=,则2@6 =____. 20.规定:用符号[x]表示一个不大于实数x的最大整数,例如:[3.69]=3,[+1]=2,[﹣2.56]=﹣3,[﹣]=﹣2.按这个规定,[﹣﹣1]=_____. 三、解答题 21.给定一个十进制下的自然数,对于每个数位上的数,求出它除以的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数的“模二数”,记为.如.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定:与相加得;与相加得与相加得,并向左边一位进.如的“模二数”相加的运算过程如下图所示. 根据以上材料,解决下列问题: (1)的值为______ ,的值为_ (2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如,因为,所以,即与满足“模二相加不变”. ①判断这三个数中哪些与“模二相加不变”,并说明理由; ②与“模二相加不变”的两位数有______个 22.阅读理解: 一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a代表这个整数分出来的左边数,b代表的这个整数分出来的中间数,c代表这个整数分出来的右边数,其中a,b,c数位相同,若b﹣a=c﹣b,我们称这个多位数为等差数. 例如:357分成了三个数3,5,7,并且满足:5﹣3=7﹣5; 413223分成三个数41,32,23,并且满足:32﹣41=23﹣32; 所以:357和413223都是等差数. (1)判断:148 等差数,514335 等差数;(用“是”或“不是”填空) (2)若一个三位数是等差数,试说明它一定能被3整除; (3)若一个三位数T是等差数,且T是24的倍数,求该等差数T. 23.(概念学习) 规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n个a(a≠0)记作aⓝ,读作“a的圈n次方”. (初步探究) (1)直接写出计算结果:2③= ,(﹣)⑤= ; (深入思考) 我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? (1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式. (﹣3)④= ;5⑥= ;(﹣)⑩= . (2)想一想:将一个非零有理数a的圈n次方写成乘方的形式等于 ; 24.请观察下列等式,找出规律并回答以下问题. ,,,,…… (1)按照这个规律写下去,第5个等式是:______;第n个等式是:______. (2)①计算:. ②若a为最小的正整数,,求: . 25.阅读下列材料:小明为了计算的值,采用以下方法: 设 ① 则 ② ②-①得, 请仿照小明的方法解决以下问题: (1)________; (2)_________; (3)求的和(,是正整数,请写出计算过程). 26.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘. 你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试: ①,又, ,∴能确定59319的立方根是个两位数. ②∵59319的个位数是9,又,∴能确定59319的立方根的个位数是9. ③如果划去59319后面的三位319得到数59, 而,则,可得, 由此能确定59319的立方根的十位数是3 因此59319的立方根是39. (1)现在换一个数195112,按这种方法求立方根,请完成下列填空. ①它的立方根是_______位数. ②它的立方根的个位数是_______. ③它的立方根的十位数是__________. ④195112的立方根是________. (2)请直接填写结果: ①________. ②________. 27.阅读型综合题 对于实数我们定义一种新运算(其中均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为,其中叫做线性数的一个数对.若实数 都取正整数,我们称这样的线性数为正格线性数,这时的叫做正格线性数的正格数对. (1)若,则 , ; (2)已知,.若正格线性数,(其中为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 28.阅读下面的文字,解答问题 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗? 事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分. 又例如:<<,即2<<3, ∴的整数部分为2,小数部分为(﹣2) 请解答: (1)整数部分是 ,小数部分是 . (2)如果的小数部分为a,的整数部分为b,求|a﹣b|+的值. (3)已知:9+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数. 29.定义:对任意一个两位数,如果满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与的商记为 例如:,对调个位数字与十位数字后得到新两位数是,新两位数与原两位数的和为,和与的商为,所以 根据以上定义,完成下列问题: (1)填空:①下列两位数:,,中,“奇异数”有 . ②计算: . . (2)如果一个“奇异数”的十位数字是,个位数字是,且请求出这个“奇异数” (3)如果一个“奇异数”的十位数字是,个位数字是,且满足,请直接写出满足条件的的值. 30.请观察下列等式,找出规律并回答以下问题. ,,,,…… (1)按照这个规律写下去,第5个等式是:______;第n个等式是:______. (2)①计算:. ②若a为最小的正整数,,求: . 【参考答案】***试卷处理标记,请不要删除 一、选择题 1.C 解析:C 【分析】 由题意可知S= 1+2020+20202+20203+…+20202020①,可得到2020S=2020+20202+20203+…+20202020+20202021②,然后由②-①,就可求出S的值. 【详解】 解:设S= 1+2020+20202+20203+…+20202020① 则2020S=2020+20202+20203+…+20202020+20202021② 由②-①得: 2019S=20202021-1 ∴. 故答案为:C. 【点晴】 本题主要考查探索数与式的规律,有理数的加减混合运算. 2.D 解析:D 【分析】 先对四个选项中的无理数进行估算,再根据P点的位置即可得出结果. 【详解】 解:∵1<<2,=2,3<<4,2<<3, ∴根据点P在数轴上的位置可知:点P表示的数可能是, 故选D. 【点睛】 本题主要考查了无理数的估算,能够正确估算出无理数的范围是解决本题的关键. 3.C 解析:C 【分析】 在拼图的过程中,拼前,拼后的面积相等,所以我们只需要分别计算拼前,拼后的面积,看是否相等,就可以逐一排除. 【详解】 A:,=8,不符合题意; B:4×(3×3÷2)=18,=18,不符合题意; C:,,符合题意; D:,,不符合题意. 故选:C. 【点睛】 本题考查了利用二次根式计算面积,解题的关键是在拼图的过程中,拼前,拼后的面积相等. 4.A 解析:A 【分析】 先根据无理数的估算求出a、b的值,由此即可得. 【详解】 , ,即, , , 故选:A. 【点睛】 本题考查了无理数的估算,熟练掌握估算方法是解题关键. 5.C 解析:C 【分析】 通过观察发现:每一行等式右边的数就是行数的平方,故第n行右边的数就是n的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正. 【详解】 解:第一行:; 第二行:; 第三行:; 第四行:; …… 第n行:; ∴第11行:. ∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正. ∴第11行左起第1个数是-122,第11个数是-132. 故选:C. 【点睛】 此题主要考查探索数与式的规律,正确找出规律是解题关键. 6.C 解析:C 【详解】 根据立方根的意义,可知,故()对; 根据算术平方根的性质,可知的算术平方根是,故()错; 根据立方根的意义,可知的立方根是,故()对; 根据平方根的意义,可知是的平方根.故()对; 故选C. 7.D 解析:D 【分析】 设点C的坐标是x,根据题意列得,求解即可. 【详解】 解:∵点A是B,C的中点. ∴设点C的坐标是x, 则, 则, ∴点C表示的数是. 故选:D. 【点睛】 此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键. 8.B 解析:B 【分析】 将2,24,27,n分解为两个正整数的积的形式,再找到相差最少的两个数,让较小的数除以较大的数进行排除即可. 【详解】 解:∵2=1×2, ∴F(2)=,故①正确; ∵24=1×24=2×12=3×8=4×6,且4和6的差绝对值最小 ∴F(24)= ,故②是错误的; ∵27=1×27=3×9,且3和9的绝对值差最小 ∴F(27)=,故③错误; ∵n是一个完全平方数, ∴n能分解成两个相等的数的积,则F(n)=1,故④是正确的. 正确的共有2个. 故答案为B. 【点睛】 本题考查有理数的混合运算与信息获取能力,解决本题的关键是弄清题意、理解黄金分解的定义. 9.B 解析:B 【解析】 试题解析:寻找每行数之间的关系,抓住每行之间的公差成等差数列, 便知第20行第一个数为210,而每行的公差为等差数列, 则第20行第10个数为426, 故选B. 10.B 解析:B 【分析】 借助O、A、B、C的位置以及绝对值的定义解答即可. 【详解】 解:-5<c<0,b=5,|d﹣5|=|d﹣c| ∴BD=CD, ∴D点介于O、B之间. 故答案为B. 【点睛】 本题考查了实数、绝对值和数轴等相关知识,掌握实数和数轴上的点一一对应是解答本题的关键. 二、填空题 11.【分析】 按照新定义的运算法先求出x,然后再进行计算即可. 【详解】 解:由 解得:x=8 故答案为. 【点睛】 本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x的 解析: 【分析】 按照新定义的运算法先求出x,然后再进行计算即可. 【详解】 解:由 解得:x=8 故答案为. 【点睛】 本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x的值. 12.6174 【分析】 任选四个不同的数字,组成个最大的数和一个最小的数,用大数减去小数,如1234, 4321- 1234= 3087, 8730-378= 8352 , 8532一2358= 617 解析:6174 【分析】 任选四个不同的数字,组成个最大的数和一个最小的数,用大数减去小数,如1234, 4321- 1234= 3087, 8730-378= 8352 , 8532一2358= 6174,6174是符合条件的4位数中唯一会产生循环的(7641-1467= 6174) 这个在数学上被称之为卡普耶卡(Kaprekar)猜想. 【详解】 任选四个不同的数字,组成一个最大的数和一个最小的数,用大数减去小数,用所得的结果的四位数重复上述的过程,最多七步必得6174,如1234, 4321-1234 =3087,8730 -378 = 8352, 8532-2358= 6174,这一现象在数学上被称之为卡普耶卡(Kaprekar)猜想, 故答案为:6174. 【点睛】 此题考查数字的规律运算,正确理解题意通过计算发现规律并运用解题是关键. 13.③④ 【分析】 根据的定义逐个判断即可得. 【详解】 ①表示不小于的最小整数,则,结论错误 ②,则,结论错误 ③表示不小于x的最小整数,则,因此的最小值是0,结论正确 ④若,则 此时, 因此,存在实 解析:③④ 【分析】 根据的定义逐个判断即可得. 【详解】 ①表示不小于的最小整数,则,结论错误 ②,则,结论错误 ③表示不小于x的最小整数,则,因此的最小值是0,结论正确 ④若,则 此时, 因此,存在实数x使成立,结论正确 综上,正确的是③④ 故答案为:③④. 【点睛】 本题考查了新定义下的实数运算,理解新定义是解题关键. 14.7 【分析】 本题可以根据代数式f(a)的运算求出a1,a2,a3,a4,a5,a6 ,a7的值,根据规律找出部分an的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论 解析:7 【分析】 本题可以根据代数式f(a)的运算求出a1,a2,a3,a4,a5,a6 ,a7的值,根据规律找出部分an的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论. 【详解】 解:观察,发现规律:a1=6,a2=f(a1)=3,a3=f(a2)=16,a4=f(a3)=8,a5=f(a4)=4,a6=f(a5)=2,a7=f(a6)=1,a8=f(a7)=6,…, ∴数列a1,a2,a3,a4…(n为正整数)每7个数一循环, ∴a1-a2+a3-a4+…+a13-a14=0, ∵2015=2016-1=144×14-1, ∴2a1-a2+a3-a4+a5-a6+…+a2013-a2014+a2015=a1+a2016+(a1-a2+a3-a4+a5-a6+…+a2015-a2016)=a1+a7=6+1=7. 故答案为7. 【点睛】 本题考查了规律型中的数字的变化类以及代数式求值,解题的关键是根据数的变化找出变换规律,并且巧妙的借助了a1-a2+a3-a4+…+a13-a14=0来解决问题. 15.或﹣5 【分析】 根据新定义运算法则,分情况讨论求解即可. 【详解】 解:当x>﹣2时,则有,解得:,成立; 当x=﹣2时,则有,解得:x=3,矛盾,舍去; 当x<﹣2时,则有,解得:x=﹣5,成立 解析:或﹣5 【分析】 根据新定义运算法则,分情况讨论求解即可. 【详解】 解:当x>﹣2时,则有,解得:,成立; 当x=﹣2时,则有,解得:x=3,矛盾,舍去; 当x<﹣2时,则有,解得:x=﹣5,成立, 综上,x=或﹣5, 故答案为:或﹣5. 【点睛】 本题考查新定义下的实数运算、解一元一次方程,理解新定义运算法则,运用分类讨论思想正确列出方程是解答的关键. 16.5050 【分析】 通过对被开方数的计算和分析,发现数字间的规律,然后利用二次根式的性质进行化简计算求解. 【详解】 解:第1个算式:, 第2个算式:, 第3个算式:, 第4个算式:, ..., 第 解析:5050 【分析】 通过对被开方数的计算和分析,发现数字间的规律,然后利用二次根式的性质进行化简计算求解. 【详解】 解:第1个算式:, 第2个算式:, 第3个算式:, 第4个算式:, ..., 第n个算式:, ∴当n=100时,, 故答案为:5050. 【点睛】 本题考查了有理数的运算,二次根式的化简,通过探索发现数字间的规律是解题关键. 17.【分析】 根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列 解析: 【分析】 根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算. 【详解】 解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1, 1+2+3+4+5+6+3=24, 24÷4=6, 则(7,3)所表示的数是 , 故答案为. 【点睛】 此题主要考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键. 18.0 【分析】 根据非负数的性质列式求出x、y,然后代入代数式进行计算即可得解. 【详解】 解:∵+(y+1)2=0 ∴x﹣1=0,y+1=0, 解得x=1,y=﹣1, 所以,(x+y)3=(1﹣1) 解析:0 【分析】 根据非负数的性质列式求出x、y,然后代入代数式进行计算即可得解. 【详解】 解:∵+(y+1)2=0 ∴x﹣1=0,y+1=0, 解得x=1,y=﹣1, 所以,(x+y)3=(1﹣1)3=0. 故答案为:0. 【点睛】 本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0. 19.4 【分析】 把x=2,y=6代入x@y=中计算即可. 【详解】 解:∵x@y=, ∴2@6==4, 故答案为4. 【点睛】 本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子. 解析:4 【分析】 把x=2,y=6代入x@y=中计算即可. 【详解】 解:∵x@y=, ∴2@6==4, 故答案为4. 【点睛】 本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子. 20.-5 【详解】 ∵3<<4, ∴−4<−<−3, ∴−5<−−1<−4, ∴[−−1]=−5. 故答案为−5. 点睛:本题考查了估算无理数的大小的应用,解决此题的关键是求出的范围. 解析:-5 【详解】 ∵3<<4, ∴−4<−<−3, ∴−5<−−1<−4, ∴[−−1]=−5. 故答案为−5. 点睛:本题考查了估算无理数的大小的应用,解决此题的关键是求出的范围. 三、解答题 21.(1)1011,1101;(2)①12,65,97,见解析,②38 【分析】 (1) 根据“模二数”的定义计算即可; (2) ①根据“模二数”和模二相加不变”的定义,分别计算和12+23,65+23,97+23的值,即可得出答案 ②设两位数的十位数字为a,个位数字为b,根据a、b的奇偶性和“模二数”和模二相加不变”的定义进行讨论,从而得出与“模二相加不变”的两位数的个数 【详解】 解: (1) , 故答案为: ①, , 与满足“模二相加不变”. ,, , 与不满足“模二相加不变”. , , , 与满足“模二相加不变” ②当此两位数小于77时,设两位数的十位数字为a,个位数字为b,; 当a为偶数,b为偶数时, ∴ ∴与满足“模二相加不变”有12个(28、48、68不符合) 当a为偶数,b为奇数时, ∴ ∴与不满足“模二相加不变”.但27、47、67、29、49、69符合共6个 当a为奇数,b为奇数时, ∴ ∴与不满足“模二相加不变”.但17、37、57、19、39、59也不符合 当a为奇数,b为偶数时, ∴ ∴与满足“模二相加不变”有16个,(18、38、58不符合) 当此两位数大于等于77时,符合共有4个 综上所述共有12+6+16+4=38 故答案为:38 【点睛】 本题考查新定义,数字的变化类,认真观察、仔细思考,分类讨论的数学思想是解决这类问题的方法.能够理解定义是解题的关键. 22.(1)不是,是;(2)见解析;(3)432或456或840或864或888 【分析】 (1)根据等差数的定义判定即可; (2)设这个三位数是M,,根据等差数的定义可知,进而得出即可. (3)根据等差数的定义以及24的倍数的数的特征可先求出a的值,再根据是8的倍数可确定c的值,又因为,所以可确定a、c为偶数时b才可取整数有意义,排除不符合条件的a、c值,再将符合条件的a、c代入求出b的值,即可求解. 【详解】 解:(1)∵ , ∴148不是等差数, ∵ , ∴514335是等差数; (2)设这个三位数是M,, ∵ , ∴ , ∵ , ∴这个等差数是3的倍数; (3)由(2)知 , ∵T是24的倍数, ∴ 是8的倍数, ∵2c是偶数, ∴只有当35a也是偶数时才有可能是8的倍数, ∴或4或6或8, 当时, ,此时若,则 ,若 ,则 ,若 ,则,大于70又是8的倍数的最小数是72,之后是80,88当时 不符合题意; 当时,,此时若,则,若,则,(144、152是8的倍数), 当时,,此时若,则,若,则, (216、244是8的倍数), 当时,,此时若,则,若,则, 若,则,(280,288,296是8的倍数), ∵, ∴若a是偶数,则c也是偶数时b才有意义, ∴和是c是奇数均不符合题意, 当时, , 当时,, 当时,, 当时,, 当时,, 综上,T为432或456或840或864或888. 【点睛】 本题考查新定义下的实数运算、有理数混合运算,整式的加减运算,能够结合倍数的特点及熟练掌握整数的奇偶性是解题关键. 23.初步探究:(1),-8;深入思考:(1)(−)2,()4,;(2) 【分析】 初步探究:(1)分别按公式进行计算即可; 深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果; (2)结果前两个数相除为1,第三个数及后面的数变为,则; 【详解】 解:初步探究:(1)2③=2÷2÷2=, ; 深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(−)2=(−)2; 5⑥=5÷5÷5÷5÷5÷5=()4; 同理可得:(﹣)⑩=; (2) 【点睛】 本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序. 24.(1),;(2)①;② 【分析】 (1)根据规律可得第5个算式;根据规律可得第n个算式; (2)①根据运算规律可得结果. ②利用非负数的性质求出与的值,代入原式后拆项变形,抵消即可得到结果. 【详解】 (1)根据规律得:第5个等式是,第n个等式是; (2)①, , , ; ②为最小的正整数,, ,, 原式, , , , . 【点睛】 本题主要考查了数字的变化规律,发现规律,运用规律是解答此题的关键. 25.(1);(2);(3) 【分析】 (1)设式子等于s,将方程两边都乘以2后进行计算即可; (2)设式子等于s,将方程两边都乘以3,再将两个方程相减化简后得到答案; (3)设式子等于s,将方程两边都乘以a后进行计算即可. 【详解】 (1)设s=①, ∴2s=②, ②-①得:s=, 故答案为:; (2)设s=①, ∴3s=②, ②-①得:2s=, ∴, 故答案为: ; (3)设s=①, ∴as=②, ②-①得:(a-1)s=, ∴s=. 【点睛】 此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键. 26.(1)①两;②8;③5;④58;(2)①24;②56. 【分析】 (1)①根据例题进行推理得出答案; ②根据例题进行推理得出答案; ③根据例题进行推理得出答案; ④根据②③得出答案; (2)①先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论; ②先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论. 【详解】 (1)①, , ∴, ∴能确定195112的立方根是一个两位数, 故答案为:两; ②∵195112的个位数字是2,又∵, ∴能确定195112的个位数字是8, 故答案为:8; ③如果划去195112后面三位112得到数195, 而, ∴, 可得, 由此能确定195112的立方根的十位数是5, 故答案为:5; ④根据②③可得:195112的立方根是58, 故答案为:58; (2)①13824的立方根是两位数,立方根的个位数是4,十位数是2, ∴13824的立方根是24, 故答案为:24; ②175616的立方根是两位数,立方根的个位数是6,十位数是5, ∴175616的立方根是56, 故答案为:56. 【点睛】 此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键. 27.(1)5,3;(2)有正格数对,正格数对为 【分析】 (1)根据定义,直接代入求解即可; (2)将代入求出b的值,再将代入,表示出kx,再根据题干分析即可. 【详解】 解:(1)∵ ∴5,3 故答案为:5,3; (2)有正格数对. 将代入, 得出,, 解得,, ∴, 则 ∴ ∵,为正整数且为整数 ∴,,, ∴正格数对为:. 【点睛】 本题考查的知识点是实数的运算,理解新定义是解此题的关键. 28.(1)7;-7;(2)5;(3)13-. 【分析】 (1)估算出的范围,即可得出答案; (2)分别确定出a、b的值,代入原式计算即可求出值; (3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求. 【详解】 解:(1)∵7﹤﹤8, ∴的整数部分是7,小数部分是-7. 故答案为:7;-7. (2)∵3﹤﹤4, ∴, ∵2﹤﹤3, ∴b=2 ∴|a-b|+ =|-3-2|+ =5-+ =5 (3)∵2﹤﹤3 ∴11<9+<12, ∵9+=x+y,其中x是整数,且0﹤y<1, ∴x=11,y=-11+9+=-2, ∴x-y=11-(-2)=13- 【点睛】 本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键. 29.(1)①,②,;(2);(3) 【分析】 (1)①由“奇异数”的定义可得;②根据定义计算可得; (2)由f(10m+n)=m+n,可求k的值,即可求b; (3)根据题意可列出等式,可求出x、y的值,即可求的值. 【详解】 解:(1)①∵对任意一个两位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”. ∴“奇异数”为21; ②f(15)=(15+51)÷11=6,f(10m+n)=(10m+n+10n+m)÷11=m+n; (2)∵f(10m+n)=m+n,且f(b)=8 ∴k+2k-1=8 ∴k=3 ∴b=10×3+2×3-1=35; (3)根据题意有 ∵ ∴ ∴ ∵x、y为正数,且x≠y ∴x=6,y=5 ∴a=6×10+5=65 故答案为:(1)①,②,;(2);(3) 【点睛】 本题考查了新定义下的实数运算,能理解“奇异数”定义是本题的关键. 30.(1),;(2)①;② 【分析】 (1)根据规律可得第5个算式;根据规律可得第n个算式; (2)①根据运算规律可得结果. ②利用非负数的性质求出与的值,代入原式后拆项变形,抵消即可得到结果. 【详解】 (1)根据规律得:第5个等式是,第n个等式是; (2)①, , , ; ②为最小的正整数,, ,, 原式, , , , . 【点睛】 本题主要考查了数字的变化规律,发现规律,运用规律是解答此题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 下册 实数 考题 试题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文