长沙市七年级下册末数学试卷及答案.doc
《长沙市七年级下册末数学试卷及答案.doc》由会员分享,可在线阅读,更多相关《长沙市七年级下册末数学试卷及答案.doc(31页珍藏版)》请在咨信网上搜索。
一、解答题 1.如图所示,在直角坐标系中,已知,,将线段平移至,连接、、、,且,点在轴上移动(不与点、重合). (1)直接写出点的坐标; (2)点在运动过程中,是否存在的面积是的面积的3倍,如果存在请求出点的坐标,如果不存在请说明理由; (3)点在运动过程中,请写出、、三者之间存在怎样的数量关系,并说明理由. 解析:(1)(2,6);(2)(,0)或(9,0);(3)∠OCD+∠DBA=∠BDC或∠OCD-∠DBA=∠BDC 【分析】 (1)由点的坐标的特点,确定出FC=2,OF=6,得出C(2,6); (2)分点D在线段OA和在OA延长线两种情况进行计算; (3)分点D在线段OA上时,∠OCD+∠DBA=∠BDC和在OA延长线∠OCD-∠DBA=∠BDC两种情况进行计算. 【详解】 解:(1)如图,过点C作CF⊥y轴,垂足为F,过B作BE⊥x轴,垂足为E, ∵A(6,0),B(8,6), ∴FC=AE=8-6=2,OF=BE=6, ∴C(2,6); (2)设D(x,0),当△ODC的面积是△ABD的面积的3倍时, 若点D在线段OA上, ∵OD=3AD, ∴×6x=3××6(6-x), ∴x=, ∴D(,0); 若点D在线段OA延长线上, ∵OD=3AD, ∴×6x=3××6(x-6), ∴x=9, ∴D(9,0); (3)如图,过点D作DE∥OC, 由平移的性质知OC∥AB. ∴OC∥AB∥DE. ∴∠OCD=∠CDE,∠EDB=∠DBA. 若点D在线段OA上, ∠BDC=∠CDE+∠EDB=∠OCD+∠DBA, 即∠OCD+∠DBA=∠BDC; 若点D在线段OA延长线上, ∠BDC=∠CDE-∠EDB=∠OCD-∠DBA, 即∠OCD-∠DBA=∠BDC. 【点睛】 此题是几何变换综合题,主要考查了点三角形面积的计算方法,平移的性质,平行线的性质和判定,解本题的关键是分点D在线段OA上,和OA延长线上两种情况. 2.在平面直角坐标系中,点,的坐标分别为,,现将线段先向上平移3个单位,再向右平移1个单位,得到线段,连接,. (1)如图1,求点,的坐标及四边形的面积; 图1 (2)如图1,在轴上是否存在点,连接,,使?若存在这样的点,求出点的坐标;若不存在,试说明理由; (3)如图2,在直线上是否存在点,连接,使?若存在这样的点,直接写出点的坐标;若不存在,试说明理由. 图2 (4)在坐标平面内是否存在点,使?若存在这样的点,直接写出点的坐标的规律;若不存在,请说明理由. 解析:(1),,;(2)存在,或;(3)存在,或;(4)存在,的纵坐标总是4或.或者:点在平行于轴且与轴的距离等于4的两条直线上;或者:点在直线或直线上 【分析】 (1)根据点的平移规律,即可得到对应点坐标; (2)由,可以得到,即可得到P点坐标; (3)由,可以得到,结合点C坐标,就可以求得点Q坐标; (4)由,可以AB边上的高的长度,从而得到点的坐标规律. 【详解】 (1)∵点,点 ∴向上平移3个单位,再向右平移1个单位之后对应点坐标为,点 ∴ ∴ (2)存在,理由如下: ∵ 即:=12 ∴ ∴或 (3)存在,理由如下: ∵ 即: ∵ ∴ ∵ ∴或 (4)存在:理由如下: ∵ ∴ 设中,AB边上的高为h 则: ∴ ∴点在直线或直线上 【点睛】 本题考查直角坐标系中点的坐标平移规律,由点到坐标轴的距离确定点坐标等知识点,根据相关内容解题是关键. 3.如图,在平面直角坐标系中,O为坐标原点,点,其中满足,D为直线AB与轴的交点,C为线段AB上一点,其纵坐标为. (1)求的值; (2)当为何值时,和面积的相等; (3)若点C坐标为(-2,1),点M(m,-3)在第三象限内,满足,求m的取值范围. (注:表示的面积) 解析:(1);(2)当时,和面积的相等;(3)m的取值范围是 【分析】 (1)利用非负数的性质求出a,b,c即可. (2)设点D的坐标为(0,y),根据面积关系,构建方程求出y,再根据△BOC和△AOD面积的相等,构建方程求出t即可. (3)分两种情形:①当-2<m<0时,如图1中,②当m≤-2时,如图2中,根据S△MOC≥5,构建不等式求解即可. 【详解】 解:(1)∵|a-2|+(b-3)2+=0, 又∵|a-2|≥0,(b-3)2≥0,≥0, ∴, ∴a=2,b=3,c=-4; (2)设点D的坐标为(0,y), 则S△BOD=×BO×OD=×4×y=2y, S△AOD=xA•OD=×2y=y, S△AOB=×OB•yA=×4×3=6, ∵S△BOD+S△AOD=S△AOB,即2y+y=6, 解得y=2,即点D的坐标为(0,2), ∴S△BOC=BO•yc=×4t=2t,S△AOD=xA•OD=×2×2=2, ∵△BOC和△AOD面积的相等,即2t=2, 解得t=1, ∴当t=1时,△BOC和△AOD面积的相等; (3)①当-2<m<0时,如图1中, 过点C作CF⊥轴于点F,过点M作GE⊥轴于点E,过点C作CG⊥轴交GE于点G, 则四边形CGEF为矩形, ∵SCGEF=2×4=8,S△CFO=×2×1=1, S△EMO=×(0−m)×3=−m,S△CMG=×(m+2)×4=2(m+2), ∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=8−1−(−m)−2(m+2)=3−m, ∵S△MOC≥5,即3−m≥5,解得m≤-4, 这与-2<m<0矛盾. ②当m≤-2时,如图2中, 过点C作GF⊥轴于点F,过点M作ME⊥轴于点E,过点M作MG⊥轴交GF于点G, 则四边形MEFG为矩形, ∵SGMEF=(0-m)×4=-4m,S△CFO=×2×1=1, S△EMO=×(0−m)×3=−m,S△CMG=×(−2−m)×4=−2(m+2), ∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=−4m−1−(−m)−[−2(m+2)]=3−m, ∵S△MOC≥5,即3−m≥5,解得m≤-4, 综上所述,m的取值范围是m≤-4. 【点睛】 本题考查了坐标与图形的性质,三角形的面积,非负数的性质等知识,解题的关键是学会利用参数,构建方程解决问题,属于中考压轴题. 4.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2). (1)直接写出点E的坐标 ; (2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题: ①当t= 秒时,点P的横坐标与纵坐标互为相反数; ②求点P在运动过程中的坐标,(用含t的式子表示,写出过程); ③当点P运动到CD上时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由. 解析:(1)(-2,0);(2)①t=2;②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);③能确定,z=x+y. 【分析】 (1)根据平移的性质即可得到结论; (2)①由点C的坐标为(-3,2).得到BC=3,CD=2,由于点P的横坐标与纵坐标互为相反数;于是确定点P在线段BC上,有PB=CD,即可得到结果; ②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t); ③如图,过P作PF∥BC交AB于F,则PF∥AD,根据平行线的性质即可得到结论. 【详解】 解:(1)根据题意,可得 三角形OAB沿x轴负方向平移3个单位得到三角形DEC, ∵点A的坐标是(1,0), ∴点E的坐标是(-2,0); 故答案为:(-2,0); (2)①∵点C的坐标为(-3,2) ∴BC=3,CD=2, ∵点P的横坐标与纵坐标互为相反数; ∴点P在线段BC上, ∴PB=CD, 即t=2; ∴当t=2秒时,点P的横坐标与纵坐标互为相反数; 故答案为:2; ②当点P在线段BC上时,点P的坐标(-t,2), 当点P在线段CD上时,点P的坐标(-3,5-t); ③能确定, 如图,过P作PF∥BC交AB于F, 则PF∥AD, ∠1=∠CBP=x°,∠2=∠DAP=y°, ∴∠BPA=∠1+∠2=x°+y°=z°, ∴z=x+y. 【点睛】 本题考查了坐标与图形的性质,坐标与图形的变化-平移,平行线的性质,正确的作出辅助线是解题的关键. 5.如图,已知,,且满足. (1)求、两点的坐标; (2)点在线段上,、满足,点在轴负半轴上,连交轴的负半轴于点,且,求点的坐标; (3)平移直线,交轴正半轴于,交轴于,为直线上第三象限内的点,过作轴于,若,且,求点的坐标. 解析:(1),; (2);(3) 【解析】 【分析】 (1)利用非负数的性质即可解决问题; (2)利用三角形面积求法,由列方程组,求出点C坐标,进而由△ACD面积求出D点坐标. (3)由平行线间距离相等得到,继而求出E点坐标,同理求出F点坐标,再由GE=12求出G点坐标,根据求出PG的长即可求P点坐标. 【详解】 解:(1) , ∴, ,, ,, ,, (2)由 ∴, , , 如图1,连,作轴,轴, , 即 , , , 而, , , , (3)如图2: ∵EF∥AB, ∴, ∴,即, , , , , , , , , , , , , , 【点睛】 本题考查的是二元一次方程的应用、三角形的面积公式、坐标与图形的性质、平移的性质,灵活运用分情况讨论思想、掌握平移规律是解题的关键. 6.如图,在平面直角坐标系中,点O为坐标原点,三角形OAB的边OA、OB分别在x轴正半轴上和y轴正半轴上,A(a,0),a是方程的解,且△OAB的面积为6. (1)求点A、B的坐标; (2)将线段OA沿轴向上平移后得到PQ,点O、A的对应点分别为点P和点Q(点P与点B不重合),设点P的纵坐标为t,△BPQ的面积为S,请用含t的式子表示S; (3)在(2)的条件下,设PQ交线段AB于点K,若PK=,求t的值及△BPQ的面积. 解析:(1)B(0,3);(2)S=(3)4 【分析】 (1)解方程求出a的值,利用三角形的面积公式构建方程求出b的值即可解决问题; (2)分两种情形分别求解:当点P在线段OB上时,当点P在线段OB的延长线上时; (3)过点K作KH⊥OA用H.根据S△BPK+S△AKH=S△AOB-S长方形OPKH,构建方程求出t,即可解决问题; 【详解】 解:(1)∵, ∴2(a+2)-3(a-2)=6, ∴-a+4=0, ∴a=4, ∴A(4,0), ∵S△OAB=6, ∴•4•OB=6, ∴OB=3, ∴B(0,3). (2)当点P在线段OB上时,S=•PQ•PB=×4×(3-t)=-2t+6. 当点P在线段OB的延长线上时,S=•PQ•PB=×4×(t-3)=2t-6. 综上所述,S=. (3)过点K作KH⊥OA用H. ∵S△BPK+S△AKH=S△AOB-S长方形OPKH, ∴PK•BP+AH•KH=6-PK•OP, ∴××(3-t)+(4-)•t=6-•t, 解得t=1, ∴S△BPQ=-2t+6=4. 【点睛】 本题考查三角形综合题,一元一次方程、三角形的面积、平移变换等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题. 7.如图,在长方形中,为平面直角坐标系的原点,点的坐标为,点的坐标为且、满足,点在第一象限内,点从原点出发,以每秒2个单位长度的速度沿着的线路移动. (1)点的坐标为___________;当点移动5秒时,点的坐标为___________; (2)在移动过程中,当点到轴的距离为4个单位长度时,求点移动的时间; (3)在的线路移动过程中,是否存在点使的面积是20,若存在直接写出点移动的时间;若不存在,请说明理由. 解析:(1)(8,12),(0,10);(2)2秒或14秒;(3)存在,t=2.5s或 【分析】 (1)由非负数的性质可得a、b的值,据此可得点B的坐标;由点P运动速度和时间可得其运动5秒的路程,得到OP=10,从而得出其坐标; (2)先根据点P运动11秒判断出点P的位置,再根据三角形的面积公式求解可得; (3)分为点P在OC、BC上分类计算即可. 【详解】 解:(1) ∵a,b满足, ∴a=8,b=12, ∴点B(8,12); 当点P移动5秒时,其运动路程为5×2=10, ∴OP=10, 则点P坐标为(0,10), 故答案为:(8,12)、(0,10); (2)由题意可得,第一种情况,当点P在OC上时, 点P移动的时间是:4÷2=2秒, 第二种情况,当点P在BA上时. 点P移动的时间是:(12+8+8)÷2=14秒, 所以在移动过程中,当点P到x轴的距离为4个单位长度时,点P移动的时间是2秒或14秒. (3)如图1所示: ∵△OBP的面积=20, ∴OP•BC=20,即×8×OP=20. 解得:OP=5. ∴此时t=2.5s 如图2所示; ∵△OBP的面积=20, ∴PB•OC=20,即×12×PB=20. 解得:BP=. ∴CP=. ∴此时t=, 综上所述,满足条件的时间t=2.5s或 【点睛】 本题考查矩形的性质,三角形的面积,坐标与图形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题. 8.如图,已知直线射线,.是射线上一动点,过点作交射线于点,连接.作,交直线于点,平分. (1)若点,,都在点的右侧. ①求的度数; ②若,求的度数.(不能使用“三角形的内角和是”直接解题) (2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在.请说明理由. 解析:(1)①35°;(2)55°;(2)存在,或 【分析】 (1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数; ②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°; (2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可. 【详解】 解:(1)①∵AB∥CD, ∴∠CEB+∠ECQ=180°, ∵∠CEB=110°, ∴∠ECQ=70°, ∵∠PCF=∠PCQ,CG平分∠ECF, ∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°; ②∵AB∥CD, ∴∠QCG=∠EGC, ∵∠QCG+∠ECG=∠ECQ=70°, ∴∠EGC+∠ECG=70°, 又∵∠EGC-∠ECG=30°, ∴∠EGC=50°,∠ECG=20°, ∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°−40°)=15°, ∵PQ∥CE, ∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°. (2)52.5°或7.5°, 设∠EGC=3x°,∠EFC=2x°, ①当点G、F在点E的右侧时, ∵AB∥CD, ∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°, 则∠GCF=∠QCG-∠QCF=3x°-2x°=x°, ∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°, 则∠ECG=∠GCF=∠PCF=∠PCD=x°, ∵∠ECD=70°, ∴4x=70°,解得x=17.5°, ∴∠CPQ=3x=52.5°; ②当点G、F在点E的左侧时,反向延长CD到H, ∵∠EGC=3x°,∠EFC=2x°, ∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°, ∴∠ECG=∠GCF=∠GCH-∠FCH=x°, ∵∠CGF=180°-3x°,∠GCQ=70°+x°, ∴180-3x=70+x, 解得x=27.5, ∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°, ∴∠PCQ=∠FCQ=62.5°, ∴∠CPQ=∠ECP=62.5°-55°=7.5°, 【点睛】 本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键. 9.综合与实践 背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础. 已知:AM∥CN,点B为平面内一点,AB⊥BC于B. 问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系; (2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C; (3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC= . 解析:(1);(2)见解析;(3)105° 【分析】 (1)通过平行线性质和直角三角形内角关系即可求解. (2)过点B作BG∥DM,根据平行线找角的联系即可求解. (3)利用(2)的结论,结合角平分线性质即可求解. 【详解】 解:(1)如图1,设AM与BC交于点O,∵AM∥CN, ∴∠C=∠AOB, ∵AB⊥BC, ∴∠ABC=90°, ∴∠A+∠AOB=90°, ∠A+∠C=90°, 故答案为:∠A+∠C=90°; (2)证明:如图2,过点B作BG∥DM, ∵BD⊥AM, ∴DB⊥BG, ∴∠DBG=90°, ∴∠ABD+∠ABG=90°, ∵AB⊥BC, ∴∠CBG+∠ABG=90°, ∴∠ABD=∠CBG, ∵AM∥CN, ∴∠C=∠CBG, ∴∠ABD=∠C; (3)如图3,过点B作BG∥DM, ∵BF平分∠DBC,BE平分∠ABD, ∴∠DBF=∠CBF,∠DBE=∠ABE, 由(2)知∠ABD=∠CBG, ∴∠ABF=∠GBF, 设∠DBE=α,∠ABF=β, 则∠ABE=α,∠ABD=2α=∠CBG, ∠GBF=∠AFB=β, ∠BFC=3∠DBE=3α, ∴∠AFC=3α+β, ∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°, ∴∠FCB=∠AFC=3α+β, △BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°, ∵AB⊥BC, ∴β+β+2α=90°, ∴α=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 故答案为:105°. 【点睛】 本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键. 10.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上. (1)根据图1填空:∠1= °,∠2= °; (2)现把三角板绕B点逆时针旋转n°. ①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数; ②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由. 解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析 【分析】 (1)根据邻补角的定义和平行线的性质解答; (2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2; ②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解. 【详解】 解:(1)∠1=180°-60°=120°, ∠2=90°; 故答案为:120,90; (2)①如图2, ∵∠ABC=60°, ∴∠ABE=180°-60°-n°=120°-n°, ∵DG∥EF, ∴∠1=∠ABE=120°-n°, ∠BCG=180°-∠CBF=180°-n°, ∵∠ACB+∠BCG+∠2=360°, ∴∠2=360°-∠ACB-∠BCG =360°-90°-(180°-n°) =90°+n°; ②当n=30°时,∵∠ABC=60°, ∴∠ABF=30°+60°=90°, AB⊥DG(EF); 当n=90°时, ∠C=∠CBF=90°, ∴BC⊥DG(EF),AC⊥DE(GF); 当n=120°时, ∴AB⊥DE(GF). 【点睛】 本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键. 11.如图,已知直线射线CD,.P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP.作,交直线AB于点F,CG平分. (1)若点P,F,G都在点E的右侧,求的度数; (2)若点P,F,G都在点E的右侧,,求的度数; (3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由. 解析:(1)40°;(2)65°;(3)存在,56°或20° 【分析】 (1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可. 【详解】 解:(1)∵∠CEB=100°,AB∥CD, ∴∠ECQ=80°, ∵∠PCF=∠PCQ,CG平分∠ECF, ∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°; (2)∵AB∥CD ∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°, ∴∠EGC+∠ECG=80°, 又∵∠EGC-∠ECG=30°, ∴∠EGC=55°,∠ECG=25°, ∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°, ∵PQ∥CE, ∴∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x, ①当点G、F在点E的右侧时, 则∠ECG=x,∠PCF=∠PCD=x, ∵∠ECD=80°, ∴x+x+x+x=80°, 解得x=16°, ∴∠CPQ=∠ECP=x+x+x=56°; ②当点G、F在点E的左侧时, 则∠ECG=∠GCF=x, ∵∠CGF=180°-4x,∠GCQ=80°+x, ∴180°-4x=80°+x, 解得x=20°, ∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°, ∴∠PCQ=∠FCQ=60°, ∴∠CPQ=∠ECP=80°-60°=20°. 【点睛】 本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等. 12.已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E. (1)如图1,求证:HG⊥HE; (2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME; (3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数. 解析:(1)见解析;(2)见解析;(3)40° 【分析】 (1)根据平行线的性质和判定解答即可; (2)过点H作HP∥AB,根据平行线的性质解答即可; (3)过点H作HP∥AB,根据平行线的性质解答即可. 【详解】 证明:(1)∵AB∥CD, ∴∠AFE=∠FED, ∵∠AGH=∠FED, ∴∠AFE=∠AGH, ∴EF∥GH, ∴∠FEH+∠H=180°, ∵FE⊥HE, ∴∠FEH=90°, ∴∠H=180°﹣∠FEH=90°, ∴HG⊥HE; (2)过点M作MQ∥AB, ∵AB∥CD, ∴MQ∥CD, 过点H作HP∥AB, ∵AB∥CD, ∴HP∥CD, ∵GM平分∠HGB, ∴∠BGM=∠HGM=∠BGH, ∵EM平分∠HED, ∴∠HEM=∠DEM=∠HED, ∵MQ∥AB, ∴∠BGM=∠GMQ, ∵MQ∥CD, ∴∠QME=∠MED, ∴∠GME=∠GMQ+∠QME=∠BGM+∠MED, ∵HP∥AB, ∴∠BGH=∠GHP=2∠BGM, ∵HP∥CD, ∴∠PHE=∠HED=2∠MED, ∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED), ∴∠GHE=∠2GME; (3)过点M作MQ∥AB,过点H作HP∥AB, 由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x, 由(2)可知:∠BGH=2∠MGH=10x, ∵∠AFE+∠BFE=180°, ∴∠AFE=180°﹣10x, ∵FK平分∠AFE, ∴∠AFK=∠KFE= ∠AFE, 即, 解得:x=5°, ∴∠BGH=10x=50°, ∵HP∥AB,HP∥CD, ∴∠BGH=∠GHP=50°,∠PHE=∠HED, ∵∠GHE=90°, ∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°, ∴∠HED=40°. 【点睛】 本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键. 13.如图1,已AB∥CD,∠C=∠A. (1)求证:AD∥BC; (2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明. (3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°, ①直接写出∠AED与∠FDC的数量关系: . ②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数 解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论; (3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系; ②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数. 【详解】 解:(1)证明:AB∥CD, ∴∠A+∠D=180°, ∵∠C=∠A, ∴∠C+∠D=180°, ∴AD∥BC; (2)∠BAE+∠CDE=∠AED,理由如下: 如图2,过点E作EF∥AB, ∵AB∥CD ∴AB∥CD∥EF ∴∠BAE=∠AEF,∠CDE=∠DEF 即∠FEA+∠FED=∠CDE+∠BAE ∴∠BAE+∠CDE=∠AED; (3)①∠AED-∠FDC=45°; ∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°, ∴∠AEC=∠DEC+∠AEB, ∴∠AED=∠AEB, ∵DF平分∠EDC ∠DEC=2∠FDC ∴∠DEC=90°-2∠FDC, ∴2∠AED+(90°-2∠FDC)=180°, ∴∠AED-∠FDC=45°, 故答案为:∠AED-∠FDC=45°; ②如图3, ∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°, ∴∠F=45°, ∴∠DEP=2∠F=90°, ∵∠DEA-∠PEA=∠DEB=∠DEA, ∴∠PEA=∠AED, ∴∠DEP=∠PEA+∠AED=∠AED=90°, ∴∠AED=70°, ∵∠AED+∠AEC=180°, ∴∠DEC+2∠AED=180°, ∴∠DEC=40°, ∵AD∥BC, ∴∠ADE=∠DEC=40°, 在△PDE中,∠EPD=180°-∠DEP-∠AED=50°, 即∠EPD=50°. 【点睛】 本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键. 14.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD于G,过点F作FH⊥MN交EG于H. (1)当点H在线段EG上时,如图1 ①当∠BEG=时,则∠HFG= . ②猜想并证明:∠BEG与∠HFG之间的数量关系. (2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系. 解析:(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部 【分析】 (1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可. (2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可. 【详解】 解:(1)①∵EG平分∠BEF, ∴∠BEG=∠FEG, ∵FH⊥EF, ∴∠EFH=90°, ∵AB∥CD, ∴∠BEF+∠EFG=180°, ∴2∠BEG+90°+∠HFG=180°, ∴2∠BEG+∠HFG=90°, ∵∠BEG=36°, ∴∠HFG=18°. 故答案为:18°. ②结论:2∠BEG+∠HFG=90°. 理由:∵EG平分∠BEF, ∴∠BEG=∠FEG, ∵FH⊥EF, ∴∠EFH=90°, ∵AB∥CD, ∴∠BEF+∠EFG=180°, ∴2∠BEG+90°+∠HFG=180°, ∴2∠BEG+∠HFG=90°. (2)如图2中,结论:2∠BEG-∠HFG=90°. 理由:∵EG平分∠BEF, ∴∠BEG=∠FEG, ∵FH⊥EF, ∴∠EFH=90°, ∵AB∥CD, ∴∠BEF+∠EFG=180°, ∴2∠BEG+90°-∠HFG=180°, ∴2∠BEG-∠HFG=90°. 【点睛】 本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 15.已知,定点,分别在直线,上,在平行线,之间有一动点. (1)如图1所示时,试问,,满足怎样的数量关系?并说明理由. (2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明 (3)当满足,且,分别平分和, ①若,则__________°. ②猜想与的数量关系.(直接写出结论) 解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF 【分析】 (1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,,,满足数量关系为:; (2)当点在的右侧时,,,满足数量关系为:; (3)①若当点在的左侧时,;当点在的右侧时,可求得; ②结合①可得,由,得出;可得,由,得出. 【详解】 解:(1)如图1,过点作, , , , , , ; (2)如图2,当点在的右侧时,,,满足数量关系为:; 过点作, , , , , , ; (3)①如图3,若当点在的左侧时, , , ,分别平分和, ,, ; 如图4,当点在的右侧时, , , ; 故答案为:或30; ②由①可知:, ; , . 综合以上可得与的数量关系为:或. 【点睛】 本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 长沙市 年级 下册 数学试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文