七年级下册淮安数学期末试卷练习(Word版-含答案).doc
《七年级下册淮安数学期末试卷练习(Word版-含答案).doc》由会员分享,可在线阅读,更多相关《七年级下册淮安数学期末试卷练习(Word版-含答案).doc(29页珍藏版)》请在咨信网上搜索。
七年级下册淮安数学期末试卷练习(Word版 含答案) 一、选择题 1.的平方根是() A.4 B. C.2 D. 2.下列汽车商标图案中,可以由一个“基本图案”通过连续平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中,点A(1,﹣2021)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列给出四个命题:①如果两个角相等,那么它们是对顶角;②如果两个角互为邻补角,那么它们的平分线互相垂直;③如果两条直线垂直于同一条直线,那么这两条直线平行;④如果两条直线平行于同一条直线,那么这两条直线平行.其中为假命题的是( ) A.① B.①② C.①③ D.①②③④ 5.如图,直线,被直线所截,,,则的度数为( ). A.40° B.60° C.45° D.70° 6.下列叙述中,①1的立方根为±1;②4的平方根为±2;③-8立方根是-2;④的算术平方根为.正确的是( ) A.①②③ B.①②④ C.①③④ D.②③④ 7.将45°的直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=31°,则∠2的度数为( ) A.10° B.14° C.20° D.31° 8.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2021次运动后,动点的坐标是( ) A.(2020, 0) B.(2021,1) C.(2021,2) D.(2021,0) 二、填空题 9.若,则______. 10.点关于轴的对称点的坐标是__________. 11.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点 E.若BC=6cm,DE=2cm,则△BCD的面积为_____cm2 12.将一副直角三角板如图放置(其中,),点在上,,则的度数是______. 13.如图,将一张长方形纸条折成如图的形状,若,则的度数为____. 14.如图,将面积为5的正方形放在数轴上,以表示-1的点为圆心,以正方形的边长为半径作圆,交数轴于点,两点,则点,表示的数分别为__________. 15.若P(2-a,2a+3)到两坐标轴的距离相等,则点P的坐标是____________________. 16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下、向右的方向不断地移动,每移动一个单位,得到点、、、…,那么点的坐标为_______. 三、解答题 17.计算题: (1); (2) 18.求下列各式中的的值: (1); (2). 19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC 证明:∵ ∠1+∠AFE=180° ∴ CD∥EF( , ) ∵∠A=∠2 ∴( ) ( , ) ∴ AB∥CD∥EF( , ) ∴ ∠A= ,∠C= , ( , ) ∵ ∠AFE =∠EFC+∠AFC ,∴ = . 20.已知点A(-2,3),B(4,3),C(-1,-3). (1)在平面直角坐标系中标出点A,B,C的位置; (2)求线段AB的长; (3)求点C到x轴的距离,点C到AB的距离; (4)求三角形ABC的面积; (5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标. 21.已知某正数的两个平方根分别是和的立方根是是的整数部分. (1)求的值; (2)求的算术平方根. 二十二、解答题 22.如图,这是由8个同样大小的立方体组成的魔方,体积为64. (1)求出这个魔方的棱长; (2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长. 二十三、解答题 23.如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°. (1)如图1,若∠BCG=40°,求∠ABC的度数; (2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小; (3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的数量关系,并说明理由. 24.如图1,E点在上,.. (1)求证: (2)如图2,平分,与的平分线交于H点,若比大,求的度数. (3)保持(2)中所求的的度数不变,如图3,平分平分,作,则的度数是否改变?若不变,请直接写出答案;若改变,请说明理由. 25.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°. (1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数; (2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数; (3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果) 26.如图,直线,一副直角三角板中,. (1)若如图1摆放,当平分时,证明:平分. (2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数. (4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长. (5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间. 【参考答案】 一、选择题 1.D 解析:D 【分析】 先算出的值,再根据平方根的定义“一般地,如果一个数的平方等于a,那么这个数叫做a的平方根”即可进行解答. 【详解】 解:, ∵, ∴4的平方根是, 故选D. 【点睛】 本题考查了平方根,解题的关键是要先算出的值和掌握平方根的定义,并学会区分平方根和算术平方根. 2.B 【分析】 根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解. 【详解】 解:A、可以由一个“基本图案”旋转得到,故本选项错误; B、可以由一个“基本图案”平移得到,故把本选项正 解析:B 【分析】 根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解. 【详解】 解:A、可以由一个“基本图案”旋转得到,故本选项错误; B、可以由一个“基本图案”平移得到,故把本选项正确; C、是轴对称图形,不是基本图案的组合图形,故本选项错误; D、是轴对称图形,不是基本图案的组合图形,故本选项错误. 故选:B. 【点睛】 本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键. 3.D 【分析】 根据各象限内点的坐标特征解答. 【详解】 解:∵点A(1,-2021), ∴A点横坐标是正数,纵坐标是负数, ∴A点在第四象限. 故选:D. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.C 【分析】 根据两个相等的角不一定是对顶角对①进行判定,根据邻补角与角平分线的性质对②进行判断,根据在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行对③进行判断,根据平行线的判定对④进行判断. 【详解】 解:①如果两个角相等,那么它们不一定是对顶角,选项说法错误,符合题意; ②如果两个角互为邻补角,那么它们的平分线互相垂直,选项说法正确,不符合题意; ③在同一平面内,如果两条直线垂直于同一条直线,那么这两条直线平行,选项说法错误,符合题意; ④如果两条直线平行于同一条直线,那么这两条直线平行,选项说法正确,不符合题意; 故选:C. 【点睛】 本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 5.A 【分析】 根据平行线的性质得出∠2=∠D,进而利用邻补角得出答案即可. 【详解】 解:如图, ∵AB∥CD, ∴∠2=∠D, ∵∠1=140°, ∴∠D=∠2=180°−∠1=180°−140°=40°, 故选:A. 【点睛】 此题考查平行线的性质,关键是根据两直线平行,内错角相等解答. 6.D 【分析】 分别求出每个数的立方根、平方根和算术平方根,再判断即可. 【详解】 ∵1的立方根为1,∴①错误; ∵4的平方根为±2,∴②正确; ∵−8的立方根是−2,∴③正确; ∵的算术平方根是,∴④正确; 正确的是②③④, 故选:D. 【点睛】 本题考查了平方根、算术平方根和立方根.解题的关键是掌握平方根、算术平方根和立方根的定义. 7.B 【分析】 根据平行线的性质,即可得出∠1=∠ADC=31°,再根据等腰直角三角形ADE中,∠ADE=45°,即可得到答案. 【详解】 解:∵AB∥CD, ∴∠1=∠ADC=30°, 又∵直角三角形ADE中,∠ADE=45°, ∴∠1=45°-31°=14°, 故选:B. 【点睛】 本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等. 8.B 【分析】 观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P的坐标. 【详解】 解:观察点的坐标变化可知: 第1次从原 解析:B 【分析】 观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P的坐标. 【详解】 解:观察点的坐标变化可知: 第1次从原点运动到点(1,1), 第2次接着运动到点(2,0), 第3次接着运动到点(3,2), 第4次接着运动到点(4,0), 第5次接着运动到点(5,1), … 按这样的运动规律, 发现每个点的横坐标与次数相等, 纵坐标是1,0,2,0;4个数一个循环, 所以2021÷4=505…1, 所以经过第2021次运动后, 动点P的坐标是(2021,1). 故选:B. 【点睛】 本题考查了规律型−点的坐标,解决本题的关键是观察点的坐标变化寻找规律. 二、填空题 9.1 【分析】 根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解. 【详解】 解:根据题意得,a-3=0,b+2=0, 解得a=3,b= -2, 所以3+(-2)=1. 故答案为1. 解析:1 【分析】 根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解. 【详解】 解:根据题意得,a-3=0,b+2=0, 解得a=3,b= -2, 所以3+(-2)=1. 故答案为1. 【点睛】 本题考查平方数非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键. 10.【分析】 关于x轴对称的点横坐标不变,纵坐标互为相反数,据此可解答. 【详解】 点关于轴的对称点的坐标是, 故答案为:. 【点睛】 本题考查了关于x轴对称的点的坐标,关于x轴对称的两个点,横坐标不 解析: 【分析】 关于x轴对称的点横坐标不变,纵坐标互为相反数,据此可解答. 【详解】 点关于轴的对称点的坐标是, 故答案为:. 【点睛】 本题考查了关于x轴对称的点的坐标,关于x轴对称的两个点,横坐标不变,纵坐标互为相反数. 11.6 【分析】 根据角平分线的性质计算即可; 【详解】 作, ∵CD是角平分线,DE⊥AC, ∴, 又∵BC=6cm, ∴; 故答案是6. 【点睛】 本题主要考查了角平分线的性质,准确计算是解题的关 解析:6 【分析】 根据角平分线的性质计算即可; 【详解】 作, ∵CD是角平分线,DE⊥AC, ∴, 又∵BC=6cm, ∴; 故答案是6. 【点睛】 本题主要考查了角平分线的性质,准确计算是解题的关键. 12.【分析】 由题意得∠ACB=30°,∠DEF=45°,根据ED∥BC,可以得到∠DEC=∠ACB=30°,即可求解. 【详解】 解:由图形可知:∠ACB=30°,∠DEF=45° ∵ED∥BC, 解析: 【分析】 由题意得∠ACB=30°,∠DEF=45°,根据ED∥BC,可以得到∠DEC=∠ACB=30°,即可求解. 【详解】 解:由图形可知:∠ACB=30°,∠DEF=45° ∵ED∥BC, ∴∠DEC=∠ACB=30° ∴∠CEF=∠DEF-∠DEC =45°-30°=15°, ∴∠AEF=180°-∠CEF=165° 故答案为:165°. 【点睛】 本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质. 13.55° 【分析】 依据平行线的性质以及折叠的性质,即可得到∠2的度数. 【详解】 解:如图所示, ∵∠1=70°, ∴∠3+∠4=180°-∠1=110°, 又∵折叠, ∴∠3=∠4=55°, 解析:55° 【分析】 依据平行线的性质以及折叠的性质,即可得到∠2的度数. 【详解】 解:如图所示, ∵∠1=70°, ∴∠3+∠4=180°-∠1=110°, 又∵折叠, ∴∠3=∠4=55°, ∵ABDE, ∴∠2=∠3=55°, 故答案为:55°. 【点睛】 本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等. 14., 【分析】 根据算术平方根的定义以及数轴的定义解答即可. 【详解】 解:∵正方形的面积为5, ∴圆的半径为, ∴点A表示的数为,点B表示的数为. 故答案为:,. 【点睛】 本题考查了实数与数轴,熟 解析:, 【分析】 根据算术平方根的定义以及数轴的定义解答即可. 【详解】 解:∵正方形的面积为5, ∴圆的半径为, ∴点A表示的数为,点B表示的数为. 故答案为:,. 【点睛】 本题考查了实数与数轴,熟记算术平方根的定义是解答本题的关键. 15.(,)或(7,-7). 【分析】 根据题意可得关于a的绝对值方程,解方程可得a的值,进一步即得答案. 【详解】 解:∵P(2-a,2a+3)到两坐标轴的距离相等, ∴. ∴或, 解得或, 当时,P点 解析:(,)或(7,-7). 【分析】 根据题意可得关于a的绝对值方程,解方程可得a的值,进一步即得答案. 【详解】 解:∵P(2-a,2a+3)到两坐标轴的距离相等, ∴. ∴或, 解得或, 当时,P点坐标为(,); 当时,P点坐标为(7,-7). 故答案为(,)或(7,-7). 【点睛】 本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键. 16.【分析】 结合图象可知,纵坐标每四个点循环一次,而25=4×6+1,故的纵坐标与的纵坐标相同,根据题中每一个周期第一点的坐标可推出,即可求解. 【详解】 结合图像可知,纵坐标每四个点一个循环, … 解析: 【分析】 结合图象可知,纵坐标每四个点循环一次,而25=4×6+1,故的纵坐标与的纵坐标相同,根据题中每一个周期第一点的坐标可推出,即可求解. 【详解】 结合图像可知,纵坐标每四个点一个循环, ……1, 是第七个周期的第一个点, 每一个周期第一点的坐标为: ,, , , (12,1). 故答案为:(12,1). 【点睛】 本题属于循环类规律探究题,考查了学生归纳猜想的能力,结合图象找准循周期是解决本题的关键. 三、解答题 17.(1);(2) 【分析】 (1)先计算被开方数,再利用算术平方根的含义求解即可得到答案; (2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案. 【详解】 解 解析:(1);(2) 【分析】 (1)先计算被开方数,再利用算术平方根的含义求解即可得到答案; (2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案. 【详解】 解:(1), (2) 【点睛】 本题考查的是算术平方根的含义,含乘方的有理数的混合运算,掌握以上知识是解题的关键. 18.(1)或;(2) 【分析】 (1)方程整理后,利用平方根定义开方即可求出x的值; (2)方程利用立方根定义开立方即可求出x的值. 【详解】 解:(1) , 或. (2) , . 【点睛】 此题考查了 解析:(1)或;(2) 【分析】 (1)方程整理后,利用平方根定义开方即可求出x的值; (2)方程利用立方根定义开立方即可求出x的值. 【详解】 解:(1) , 或. (2) , . 【点睛】 此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键. 19.同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC . 【分析】 根据同旁 解析:同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC . 【分析】 根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE ,∠C=∠EFC,根据角的和可得 ∠AFE =∠EFC+∠AFC 即可. 【详解】 证明:∵ ∠1+∠AFE=180° ∴ CD∥EF(同旁内角互补,两直线平行), ∵∠A=∠2 , ∴( AB∥CD ) (同位角相等,两直线平行), ∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行) ∴ ∠A= ∠AFE ,∠C= ∠EFC,(两直线平行,内错角相等) ∵ ∠AFE =∠EFC+∠AFC , ∴ ∠A = ∠C+∠AFC . 故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC . 【点睛】 本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键. 20.(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3) 【分析】 (1)根据三个点的坐标,在坐标系中标出来对应的位置即可; (2)根据两点坐标求出两点的距离即可; (3)根 解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3) 【分析】 (1)根据三个点的坐标,在坐标系中标出来对应的位置即可; (2)根据两点坐标求出两点的距离即可; (3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解; (4)根据三角形面积=AB的长×C到直线AB的距离求解即可; (5)根据同底等高的两个三角形面积相等即可求解. 【详解】 解:(1)如图所示,即为所求; (2)∵A(-2,3),B(4,3), ∴AB=4-(-2)=6; (3)∵C(-1,-3), ∴C到x轴的距离为3,到直线AB的距离为6; (4)∵AB=6,C到直线AB的距离为6, ∴; (5)如图所示,三角形ABP与三角形ABC同底等高,即为所求 ∴P(0,-3); 同理当P在AB的上方还有一个到AB距离是6的点满足要求,即P(0,9); ∴P(0,-3)或(0,9). 【点睛】 本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解. 21.(1),,c=4;(2)4 【分析】 (1)由题意可得出,得出a的值,代入中得出b的值,再根据即可得出c的值; (2)代入a、b、c的值求出代数式的值,再求算术平方根即可. 【详解】 解:(1)∵某 解析:(1),,c=4;(2)4 【分析】 (1)由题意可得出,得出a的值,代入中得出b的值,再根据即可得出c的值; (2)代入a、b、c的值求出代数式的值,再求算术平方根即可. 【详解】 解:(1)∵某正数的两个平方根分别是和 ∴ ∴ 又∵的立方根是3 ∴ ∴ 又∵,c是的整数部分 ∴ (2) 故的算术平方根是4. 【点睛】 本题考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c值的确定,学会用“逼近法”求无理数的整数部分是解此题的关键. 二十二、解答题 22.(1)棱长为4;(2)边长为:(或) 【分析】 (1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案. 【详解】 解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4. 解析:(1)棱长为4;(2)边长为:(或) 【分析】 (1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案. 【详解】 解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4. (2)因为正方体的棱长为4,所以AB=. 【点睛】 本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键. 二十三、解答题 23.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析. 【分析】 (1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后 解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析. 【分析】 (1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果; (2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果; (3)过P作PKHDGE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果. 【详解】 解:(1)过点B作BMHD,则HDGEBM,如图1, ∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG, ∵∠DAB=120°,∠BCG=40°, ∴∠ABM=60°,∠CBM=40°, ∴∠ABC=∠ABM+∠CBM=100°; (2)过B作BPHDGE,过F作FQHDGE,如图2, ∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG, ∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG, ∵∠DAB=120°, ∴∠HAB=180°﹣∠DAB=60°, ∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°, ∴∠HAF=30°,∠FCG=40°, ∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°, ∴∠ABC>∠AFC; (3)过P作PKHDGE,如图3, ∴∠APK=∠HAP,∠CPK=∠PCG, ∴∠APC=∠HAP+∠PCG, ∵PN平分∠APC, ∴∠NPC=∠HAP+∠PCG, ∵∠PCE=180°﹣∠PCG,CN平分∠PCE, ∴∠PCN=90°﹣∠PCG, ∵∠N+∠NPC+∠PCN=180°, ∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP, 即:∠N=90°﹣∠HAP. 【点睛】 本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点. 24.(1)见解析;(2)100°;(3)不变,40° 【分析】 (1)如图1,延长交于点,根据,,可得,所以,可得,又,进而可得结论; (2)如图2,作,,根据,可得,根据平行线的性质得角之间的关系,再 解析:(1)见解析;(2)100°;(3)不变,40° 【分析】 (1)如图1,延长交于点,根据,,可得,所以,可得,又,进而可得结论; (2)如图2,作,,根据,可得,根据平行线的性质得角之间的关系,再根据比大,列出等式即可求的度数; (3)如图3,过点作,设直线和直线相交于点,根据平行线的性质和角平分线定义可求的度数. 【详解】 解:(1)证明:如图1,延长交于点, ,, , , , , , ; (2)如图2,作,, , , ,, 平分, , , , , , , 平分, , , , , 设, , 比大, , 解得 的度数为; (3)的度数不变,理由如下: 如图3,过点作,设直线和直线相交于点, 平分,平分, , , ,, , , , , 由(2)可知:, , , , , , . 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质. 25.(1)105°;(2)135°;(3)5.5或11.5. 【分析】 (1)在△CEN中,用三角形内角和定理即可求出; (2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角 解析:(1)105°;(2)135°;(3)5.5或11.5. 【分析】 (1)在△CEN中,用三角形内角和定理即可求出; (2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数. (3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果. 【详解】 解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°; (2)∵∠BON=30°,∠N=30°, ∴∠BON=∠N, ∴MN∥CB. ∴∠OCD+∠CEN=180°, ∵∠OCD=45° ∴∠CEN=180°-45°=135°; (3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直. 【点睛】 本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数. 26.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性 解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案; (4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可. 【详解】 (1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°, ∵ED平分∠PEF, ∴∠PEF=2∠PED=2∠DEF=2×60°=120°, ∵PQ∥MN, ∴∠MFE=180°−∠PEF=180°−120°=60°, ∴∠MFD=∠MFE−∠DFE=60°−30°=30°, ∴∠MFD=∠DFE, ∴FD平分∠EFM; (2)如图2,过点E作EK∥MN, ∵∠BAC=45°, ∴∠KEA=∠BAC=45°, ∵PQ∥MN,EK∥MN, ∴PQ∥EK, ∴∠PDE=∠DEK=∠DEF−∠KEA, 又∵∠DEF=60°. ∴∠PDE=60°−45°=15°, 故答案为:15°; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ, ∴∠LFA=∠BAC=45°,∠RHG=∠QGH, ∵FL∥MN,HR∥PQ,PQ∥MN, ∴FL∥PQ∥HR, ∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA, ∵∠FGQ和∠GFA的角平分线GH、FH相交于点H, ∴∠QGH=∠FGQ,∠HFA=∠GFA, ∵∠DFE=30°, ∴∠GFA=180°−∠DFE=150°, ∴∠HFA=∠GFA=75°, ∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°, ∴∠GFL=∠GFA−∠LFA=150°−45°=105°, ∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°, ∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°; (4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A, ∴D′A=DF,DD′=EE′=AF=5cm, ∵DE+EF+DF=35cm, ∴DE+EF+D′A+AF+DD′=35+10=45(cm), 即四边形DEAD′的周长为45cm; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°, 分三种情况: BC∥DE时,如图5,此时AC∥DF, ∴∠CAE=∠DFE=30°, ∴3t=30, 解得:t=10; BC∥EF时,如图6, ∵BC∥EF, ∴∠BAE=∠B=45°, ∴∠BAM=∠BAE+∠EAM=45°+45°=90°, ∴3t=90, 解得:t=30; BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R, ∵∠DRM=∠EAM+∠DFE=45°+30°=75°, ∴∠BKA=∠DRM=75°, ∵∠ACK=180°−∠ACB=90°, ∴∠CAK=90°−∠BKA=15°, ∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°, ∴3t=120, 解得:t=40, 综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行. 【点睛】 本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 淮安 数学 期末试卷 练习 Word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文