成都七中育才学校学道分校八年级上册压轴题数学模拟试卷含详细答案.doc
《成都七中育才学校学道分校八年级上册压轴题数学模拟试卷含详细答案.doc》由会员分享,可在线阅读,更多相关《成都七中育才学校学道分校八年级上册压轴题数学模拟试卷含详细答案.doc(38页珍藏版)》请在咨信网上搜索。
1、成都七中育才学校学道分校八年级上册压轴题数学模拟试卷含详细答案一、压轴题1如图1在ABC中,ACB=90,AC=BC=10,直线DE经过点C,过点A,B分别作ADDE,BEDE,垂足分别为点D和E,AD=8,BE=6(1)求证:ADCCEB;求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N以8个单位长度/秒的速度从点B出发沿着线BCCA运动,到终点AM,N两点同时出发,运动时间为t秒(t0),当点N到达终点时,两点同时停止运动,过点M作PMDE于点P,过点N作QNDE于点Q;当点N在线段CA上时,用含有t的代数式表示线段CN的长度;当t为何值时,点
2、M与点N重合;当PCM与QCN全等时,则t=2已知在ABC中,ABAC,射线BM、BN在ABC内部,分别交线段AC于点G、H(1)如图1,若ABC60,MBN30,作AEBN于点D,分别交BC、BM于点E、F求证:12;如图2,若BF2AF,连接CF,求证:BFCF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若BFEBAC2CFE,求的值3问题情景:数学课上,老师布置了这样一道题目,如图1,ABC是等边三角形,点D是BC的中点,且满足ADE60,DE交等边三角形外角平分线于点E试探究AD与DE的数量关系操作发现:(1)小明同学过点D作DFAC交AB于F,通过构造全等三角形经过
3、推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明类比探究:(2)如图2,当点D是线段BC上任意一点(除B、C外),其他条件不变,试猜想AD与DE之间的数量关系,并证明你的结论拓展应用:(3)当点D在线段BC的延长线上,且满足CDBC,在图3中补全图形,直接判断ADE的形状(不要求证明)4(1)填空把一张长方形的纸片按如图所示的方式折叠,为折痕,折叠后的点落在或的延长线上,那么的度数是_;把一张长方形的纸片按如图所示的方式折叠,点与点重合,为折痕,折叠后的点落在或的延长线上,那么的度数是_(2)解答:把一张长方形的纸片按如图所示的方式折叠,为折痕,折叠后的点落在
4、或的延长线上左侧,且,求的度数;把一张长方形的纸片按如图所示的方式折叠,点与点重合,为折痕,折叠后的点落在或的延长线右侧,且,求的度数(3)探究:把一张四边形的纸片按如图所示的方式折叠,为折痕,设,求,之间的数量关系5在等腰中,,为边上的高,点在的外部且,,连接交直线于点,连接(1)如图,当时,求证:;(2)如图,当时,求的度数;(3)如图,当时,求证:6在ABC中,已知A(1)如图1,ABC、ACB的平分线相交于点D当70时,BDC度数 度(直接写出结果);BDC的度数为 (用含的代数式表示);(2)如图2,若ABC的平分线与ACE角平分线交于点F,求BFC的度数(用含的代数式表示)(3)在
5、(2)的条件下,将FBC以直线BC为对称轴翻折得到GBC,GBC的角平分线与GCB的角平分线交于点M(如图3),求BMC的度数(用含的代数式表示)7如图,已知ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP= cm,CQ= cm(2)若点Q的运动速度与点P的运动速度相等,经过1s后,BPD与CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD与CQP全等?(4)若点Q以
6、(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC三边运动,求经过多长时间点P与点Q第一次相遇?8如图1,在平面直角坐标系中,点的坐为,点的坐标为,在中,轴交轴于点(1)求和的度数;(2)如图,在图的基础上,以点为一锐角顶点作,交于点,求证:;(3)在第()问的条件下,若点的标为,求四边形的面积9在中,是直线上一点,在直线上,且(1)如图1,当D在上,在延长线上时,求证:;(2)如图2,当为等边三角形时,是的延长线上一点,在上时,作,求证:;(3)在(2)的条件下,的平分线交于点,连,过点作于点,当,时,求的长度10RtABC中,C=90,点D、E分别是ABC边
7、AC、BC上的点,点P是一动点令PDA=1,PEB=2,DPE=(1)若点P在线段AB上,如图(1)所示,且=60,则1+2= ;(2)若点P在线段AB上运动,如图(2)所示,则、1、2之间的关系为 ;(3)若点P运动到边AB的延长线上,如图(3)所示,则、1、2之间有何关系?猜想并说明理由;(4)若点P运动到ABC形外,如图(4)所示,则、1、2之间有何关系?猜想并说明理由 11对定义一种新运算,规定:(其中均为非零常数)例如:(1)已知求的值;若关于的不等式组恰好有3个整数解,求的取值范围;(2)当时,对任意有理数都成立,请直接写出满足的关系式学习参考:,即单项式乘以多项式就是用单项式去乘
8、多项式的每一项,再把所得的结果相加;,即多项式乘以多项式就是用一个多项式的每一项去乘另一个多项式的每一项,再把所得的结果相加12问题背景:(1)如图1,已知ABC中,BAC90,ABAC,直线m经过点A,BD直线m,CE直线m,垂足分别为点D、E求证:DEBDCE拓展延伸:(2)如图2,将(1)中的条件改为:在ABC中,ABAC,D、A、E三点都在直线m上,并且有BDAAECBAC请写出DE、BD、CE三条线段的数量关系(不需要证明)实际应用:(3)如图,在ACB中,ACB90,ACBC,点C的坐标为(2,0),点A的坐标为(6,3),请直接写出B点的坐标13已知,如图1,直线l2l1,垂足为
9、A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3l1,点E在直线l3上,点D的下方(1)l2与l3的位置关系是 ;(2)如图1,若CE平分BCD,且BCD70,则CED ,ADC ;(3)如图2,若CDBD于D,作BCD的角平分线,交BD于F,交AD于G试说明:DGFDFG;(4)如图3,若DBEDEB,点C在射线AM上运动,BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索N:BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值14在我们认识的多边形中,有很多轴对称图形有些多边形,边数不同对称轴的条数也不同;有些多边
10、形,边数相同但却有不同数目的对称轴回答下列问题:(1)非等边的等腰三角形有_条对称轴,非正方形的长方形有_条对称轴,等边三角形有_条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1-2和图1-3都可以看作由图1-1修改得到的,仿照类似的修改方式,请你在图1-4和图1-5中,分别修改图1-2和图1-3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴15数学活
11、动课上,老师出了这样一个题目:“已知:于,点、分别在和上,作线段和(如图1),使求证:”(1)聪聪同学给出一种证明问题的辅助线:如图2,过作,交于请你根据聪聪同学提供的辅助线(或自己添加其它辅助线),给出问题的证明(2)若点在直线下方,且知,直接写出和之间的数量关系16如图1,我们定义:在四边形ABCD中,若AD=BC,且ADB+BCA=180,则把四边形ABCD叫做互补等对边四边形(1)如图2,在等腰中,AE=BE,四边形ABCD是互补等对边四边形,求证:ABD=BAC=AEB(2)如图3,在非等腰中,若四边形ABCD仍是互补等对边四边形,试问ABD=BAC=AEB是否仍然成立?若成立,请加
12、以证明;若不成立,请说明理由17在ABC中,已知A(1)如图1,ABC、ACB的平分线相交于点D求BDC的大小(用含的代数式表示);(2)如图2,若ABC的平分线与ACE的平分线交于点F,求BFC的大小(用含的代数式表示);(3)在(2)的条件下,将FBC以直线BC为对称轴翻折得到GBC,GBC的平分线与GCB的平分线交于点M(如图3),求BMC的度数(用含的代数式表示)18在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的例:已知:,求代数式x2+的值
13、解:,4即4x+4x2+(x+)2216214材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题例:若2x3y4z,且xyz0,求的值解:令2x3y4zk(k0)则根据材料回答问题:(1)已知,求x+的值(2)已知,(abc0),求的值(3)若,x0,y0,z0,且abc7,求xyz的值19已知:MNPQ,点A,B分别在MN,PQ上,点C为MN,PQ之间的一点,连接CA,CB(1)如图1,求证:C=MAC+PBC;(2)如图2,AD,BD,AE,BE分别为MAC,PBC,CAN,CBQ的角平分线,求证:D+E=180;(3)在(
14、2)的条件下,如图3,过点D作DA的垂线交PQ于点G,点F在PQ上,FDA=2FDB,FD的延长线交EA的延长线于点H,若3C=4E,猜想H与GDB的倍数关系并证明20已知ABC,P 是平面内任意一点(A、B、C、P 中任意三点都不在同一直线上)连接 PB、PC,设PBAs,PCAt,BPCx,BACy(1)如图,当点 P 在ABC 内时,若 y70,s10,t20,则 x ;探究 s、t、x、y 之间的数量关系,并证明你得到的结论(2)当点 P 在ABC 外时,直接写出 s、t、x、y 之间所有可能的数量关系,并画出相应的图形【参考答案】*试卷处理标记,请不要删除一、压轴题1(1)证明见解析
15、;DE=14;(2)8t10;t=2;t=【解析】【分析】(1)先证明DACECB,由AAS即可得出ADCCEB;由全等三角形的性质得出ADCE8,CDBE6,即可得出DECDCE14;(2)当点N在线段CA上时,根据CNCNBC即可得出答案;点M与点N重合时,CMCN,即3t8t10,解得t2即可;分两种情况:当点N在线段BC上时,PCMQNC,则CMCN,得3t108t,解得t1011;当点N在线段CA上时,PCMQCN,则3t8t10,解得t2;即可得出答案【详解】(1)证明:ADDE,BEDE,ADCCEB90,ACB90,DACDCADCABCE90,DACECB,在ADC和CEB中
16、,ADCCEB(AAS);由得:ADCCEB,ADCE8,CDBE6,DECDCE6814;(2)解:当点N在线段CA上时,如图3所示:CNCNBC8t10;点M与点N重合时,CMCN,即3t8t10,解得:t2,当t为2秒时,点M与点N重合;分两种情况:当点N在线段BC上时,PCMQNC,CMCN,3t108t,解得:t;当点N在线段CA上时,PCMQCN,点M与N重合,CMCN,则3t8t10,解得:t2;综上所述,当PCM与QCN全等时,则t等于s或2s,故答案为:s或2s【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;
17、本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键2(1)见解析;见解析;(2)2【解析】【分析】(1)只要证明2+BAF1+BAF60即可解决问题;只要证明BFCADB,即可推出BFCADB90;(2)在BF上截取BKAF,连接AK只要证明ABKCAF,可得SABKSAFC,再证明AFFKBK,可得SABKSAFK,即可解决问题;【详解】(1)证明:如图1中,ABAC,ABC60ABC是等边三角形,BAC60,ADBN,ADB90,MBN30,BFD601+BAF2+BAF,12证明:如图2中,在RtBFD中,FBD30,BF2DF,BF2AF,BFAD,BAEFBC,ABBC,BFC
18、ADB,BFCADB90,BFCF(2)在BF上截取BKAF,连接AKBFE2+BAF,CFE4+1,CFB2+4+BAC,BFEBAC2EFC,1+42+412,ABAC,ABKCAF,34,SABKSAFC,1+32+3CFEAKB,BAC2CEF,KAF1+3AKF,AFFKBK,SABKSAFK,【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题3(1)ADDE,见解析;(2)ADDE,见解析;(3)见解析,ADE是等边三角形,【解析】【分析】(1)根
19、据题意,通过平行线的性质及等边三角形的性质证明即可得解;(2)根据题意,通过平行线的性质及等边三角形的性质证明即可得解;(3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:ADDE. 证明:是等边三角形ABBC,DFAC,BDFBCA是等边三角形,DFBD点D是BC的中点BDCDDFCDCE是等边的外角平分线是等边三角形,点D是BC的中点ADBC在与中ADDE;(2)结论:ADDE. 证明:如下图,过点D作DFAC,交AB于F是等边三角形ABBC,DFAC是等边三角形,BFBDAFDCCE是等边的外角平分线ADC是的外角FADCDE在与中ADDE;(3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 成都 育才 学校 分校 年级 上册 压轴 数学模拟 试卷 详细 答案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。