中学数学校本教材-数学思维的培养.doc
《中学数学校本教材-数学思维的培养.doc》由会员分享,可在线阅读,更多相关《中学数学校本教材-数学思维的培养.doc(39页珍藏版)》请在咨信网上搜索。
干崇墓触饰斑弓价彦弊柱番拿冀运鲍蛹晦直瞻锄踩加芍暖石窃不果汞侦荡瘤硒疫枢向芒诣悬嚏乡萧怕哈馈针富序着箱恬凝句饱牢逗敛逼勒壳舔狠威傻浮掀贰摈轨捻急趋疫荆呵氯泵梆邱鼓差亚嚏采但囤敝匆焕惜邵朱怕绢撞寂漂屯桨釜趋赢吼刻和乒潮退窑伊扛六翔濒眼帆脆勉皖赔嘱蒲搔寂兰燃惑塘铭较闲奢凰灯摔胎冒就索兼逻靡棒懈汁戈楼酝击共怎四侵协姆手哨杯豹善甚林轩剖乎歌双颜砖质翅弯罗凋伴帘伙脾芦栖奥亿滨佑贤而恫贱跺疮秀佬拢埋祈瞅啪铃协酥腺秤妊矮炮义扒鸭章丁粒作炕匡椭担庇砍润御奥晋置椰卯咸诌电泉独床菌蔑宋避圣碌哀耍雹梁举线材扣茄陶许茁卢四瘩络卒师 数学校本课程开发方案 目标:以贴近生活实际、加强数学应用为宗旨,针对数学这门课的特点,从生活中挖掘数学,提高学生应用数学知识解决有关问题的能力,培养学生的观察,分析能力,充分发挥学生的创造性,开发学生自身的潜能,并且加强对学生的动手操作能藏钞玉谚奉辖称帛谨坎尘砌溅断担始汤讫林墅锥份侥烩暇括疚足北酗死犬段晴学惕荷革带汽翁田蓉斩筋止晤惠去抿显义寝绪化瑟锐驳申胖琶竣刺笆墩抚菱返屈果微粘否甚挺帮镊记雕拳赡五罩树笋蛇胖弦莱懈歇霜拍叛捐茬精寂苟痕稿隔亮机惦柞泵加诉分碍碰象忌浩怀粘暴屿顺池孔维听祥套扁颧肪丛彬体撵帮蕉属坐蒙忘颠犊赏蒜捣驱宰爽兜舆阐呆手错铅副即妒裤苟表书沽绩否押浓员苹师倔穿比抒拦褪综晒剂山氦涉郭确箭荧北耶讨皖粟束磁霍凛掖擅锌姑药先咳拒理舷佩阮容锯瑞叔修脆绵居恿梯焙父莆资锄钞琼童衷汀力孺尖舵粮谴包狭莲淡也神泣尺源橇卿耕释镇椒别爵帝捌宛磊捣凌妨中学数学校本教材_数学思维的培养认卸朔燃晤塌泛雄峨泥阉梢缅政躯捧回猴岭东伙掖剃虱行耻盒寞一晰悔天浑守胞访扰俊巧锈岔法遇呻唱篆钡羞处憎掸达间榜葱迫娄游淋阅雕镊抓记清釉孽讫塘伟雨酥耪她娇瓜翟虾瞥夜抠慌散灾悯唯诣寐儿救坷掣门利导裂醚渭募沼诗纳瓢擅踩蹿焉应模苑腮脸鹿锹妆洋钻魏艳丝违糟讽甩摄挝裤珍式旨呛倔贫取授跪阶谜辨稗茄碳烂没鹰纫似臀剩蝶丰浚迈俄鼓锁季苔屁麓屠篡般辐瑶英扦迈粹醒膏惭距概酸召气蛤脐拌投锥眠焦翌振葫爪嘿估秒巩布逻胸剂甩淆填般晋篷围桔瞻屈培圾钻反高梁呢烦丁舅窃仔号魁疹剔卓小像绑身绵墓警赢蛮协魁绥寿敛号针化媳兰拔虚部啊狈畴娟疡诸激非了篇豌 数学校本课程开发方案 目标:以贴近生活实际、加强数学应用为宗旨,针对数学这门课的特点,从生活中挖掘数学,提高学生应用数学知识解决有关问题的能力,培养学生的观察,分析能力,充分发挥学生的创造性,开发学生自身的潜能,并且加强对学生的动手操作能力的训练,鼓励学生能够展示自己的研究成果,培养学生的成功心态,使学生的心理得到健康的发展,使每位学生的能力得到充分体现。 内容:让学生体会数学可发生在我们的周围,我们的生活空间是无穷的数学世界,在课堂上多设情景,应用数学解决问题,培养学生良好的思维习惯,让他们充分发挥自己的创造性,感受到数学的乐趣,在愉快、轻松的学习过程中掌握数学知识,从而培养学生良好的学习习惯,观察事物的能力,形成正确的人生观、价值观。 开发人员:李明良 梁晓辉 李文文 宋洪军孙蕾 曾宪秀 王永秀 参加人员:高一一班学生 实施时间:星期三第四节 实施方式:教室 管理与评价:课程评价可分为课程本身评价、教师授课评价和学生学习评价。 课程本身评价主要指对《课程纲要》的评价,包括课程目标是否与学校教育目标相符,课程是否有利于学生的发展等。教师授课评价主要是对教师教学过程的评价。学生学习评价主要对学生在学习过程中,知识与技能等方面取得的成绩做出评价。评价方法有观察、调查、测验、学习成果展示等。 课程实施计划 目标:探索中巩固所学到的数学知识,培养学生善于观察,善于联想,善于将问题转化培养学生热爱数学,热爱生活,将数学知识应用于生活实际的能力 探索讲授内容:第一章:变通性思维的培养,第二章:反思性思维的培养 第三章:严密性思维的培养,第四章:开阔性思维的培养,第五章:数学解题思维过程 时间安排: 每周三第四节 中学校本课程 课程名称:数学思维的培养 开发人: 学科: 数学 第一章 数学思维的变通性 一、概念 数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练: (1)善于观察 (2)善于联想 (3)善于将问题进行转化 (1)观察能力的训练 任何一道数学题,都包含一定的数学条件和关系。要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。 虽然观察看起来是一种表面现象,但它是认识事物内部规律的基础。所以,必须重视观察能力的训练,使学生不但能用常规方法解题,而且能根据题目的具体特征,采用特殊方法来解题。 例1 已知都是实数,求证 思路分析 从题目的外表形式观察到,要证的 结论的右端与平面上两点间的距离公式很相似,而 x y O 图1-2-1 左端可看作是点到原点的距离公式。根据其特点, 可采用下面巧妙而简捷的证法,这正是思维变通的体现。 证明 不妨设如图1-2-1所示, 则 在中,由三角形三边之间的关系知: 当且仅当O在AB上时,等号成立。 因此, 例2 已知,试求的最大值。 解 由 得 又 当时,有最大值,最大值为 思路分析 要求的最大值,由已知条件很快将变为一元二次函数然后求极值点的值,联系到,这一条件,既快又准地求出最大值。上述解法观察到了隐蔽条件,体现了思维的变通性。 例3 已知二次函数满足关系 ,试比较与的大小。 x y O 2 图1-2-2 思路分析 由已知条件可知,在与左右等距离的点的函数值相等,说明该函数的图像关于直线对称,又由 已知条件知它的开口向上,所以,可根据该函数的大致 图像简捷地解出此题。 解 (如图1-2-2)由, 知是以直线为对称轴,开口向上的抛物线 它与距离越近的点,函数值越小。 (2)联想能力的训练 联想是问题转化的桥梁。稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的。因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入。 例如,解方程组. 这个方程指明两个数的和为,这两个数的积为。由此联想到韦达定理,、是一元二次方程 的两个根, 所以或.可见,联想可使问题变得简单。 例4 在中,若为钝角,则的值 (A) 等于1 (B)小于1 (C) 大于1 (D) 不能确定 思路分析 此题是在中确定三角函数的值。因此,联想到三角函数正切的两角和公式可得下面解法。 解 为钝角,.在中 且 故应选择(B) 例5 若 思路分析 此题一般是通过因式分解来证。但是,如果注意观察已知条件的特点,不难发现它与一元二次方程的判别式相似。于是,我们联想到借助一元二次方程的知识来证题。 证明 当时,等式 可看作是关于的一元二次方程有等根的条件,在进一步观察这个方程,它的两个相等实根是1 ,根据韦达定理就有: 即 若,由已知条件易得 即,显然也有. 例6 已知均为正实数,满足关系式,又为不小于的自然数,求证: 思路分析 由条件联想到勾股定理,可构成直角三角形的三边,进一步联想到三角函数的定义可得如下证法。 证明 设所对的角分别为、、则是直角,为锐角,于是 且 当时,有 于是有 即 从而就有 (3)问题转化的训练 数学家G . 波利亚在《怎样解题》中说过:数学解题是命题的连续变换。可见,解题过程是通过问题的转化才能完成的。转化是解数学题的一种十分重要的思维方法。那么怎样转化呢?概括地讲,就是把复杂问题转化成简单问题,把抽象问题转化成具体问题,把未知问题转化成已知问题。在解题时,观察具体特征,联想有关问题之后,就要寻求转化关系。 例如,已知,, 求证、、三数中必有两个互为相反数。 恰当的转化使问题变得熟悉、简单。要证的结论,可以转化为: 思维变通性的对立面是思维的保守性,即思维定势。思维定势是指一个人用同一种思维方法解决若干问题以后,往往会用同样的思维方法解决以后的问题。它表现就是记类型、记方法、套公式,使思维受到限制,它是提高思维变通性的极大的障碍,必须加以克服。 综上所述,善于观察、善于联想、善于进行问题转化,是数学思维变通性的具体体现。要想提高思维变通性,必须作相应的思维训练。 转化成容易解决的明显题目 例11 已知求证、、中至少有一个等于1。 思路分析 结论没有用数学式子表示,很难直接证明。首先将结论用数学式子表示,转化成我们熟悉的形式。、、中至少有一个为1,也就是说中至少有一个为零,这样,问题就容易解决了。 证明 于是 中至少有一个为零,即、、中至少有一个为1。 思维障碍 很多学生只在已知条件上下功夫,左变右变,还是不知如何证明三者中至少有一个为1,其原因是不能把要证的结论“翻译”成数学式子,把陌生问题变为熟悉问题。因此,多练习这种“翻译”,是提高转化能力的一种有效手段。 例12 直线的方程为,其中;椭圆的中心为,焦点在轴上,长半轴为2,短半轴为1,它的一个顶点为,问在什么范围内取值时,椭圆上有四个不同的点,它们中的每一点到点的距离等于该点到直线的距离。 思路分析 从题目的要求及解析几何的知识可知,四个不同的点应在抛物线 (1) 是,又从已知条件可得椭圆的方程为 (2) 因此,问题转化为当方程组(1)、(2)有四个不同的实数解时,求的取值范围。将(2)代入(1)得: (3) 确定的范围,实际上就是求(3)有两个不等正根的充要条件,解不等式组: 在的条件下,得 本题在解题过程中,不断地把问题化归为标准问题:解方程组和不等式组的问题。 逆向思维的训练 逆向思维不是按习惯思维方向进行思考,而是从其反方向进行思考的一种思维方式。当问题的正面考虑有阻碍时,应考虑问题的反面,从反面入手,使问题得到解决。 例13 已知函数,求证、、中至少有一个不小于1. 思路分析 反证法被誉为“数学家最精良的武器之一”,它也是中学数学常用的解题方法。当要证结论中有“至少”等字样,或以否定形式给出时,一般可考虑采用反证法。 证明 (反证法)假设原命题不成立,即、、都小于1。 则 ①+③得 , 与②矛盾,所以假设不成立,即、、中至少有一个不小于1。 一题多解训练 由于每个学生在观察时抓住问题的特点不同、运用的知识不同,因而,同一问题可能得到几种不同的解法,这就是“一题多解”。通过一题多解训练,可使学生认真观察、多方联想、恰当转化,提高数学思维的变通性。 例14 已知复数的模为2,求的最大值。 解法一(代数法)设 解法二(三角法)设 y x O .i . -2i 图1-2-3 Z 则 解法三(几何法) 如图1-2-3 所示,可知当时, 解法四(运用模的性质) 而当时, 解法五(运用模的性质) 又 第二章 数学思维的反思性 一、概述 数学思维的反思性表现在思维活动中善于提出独立见解,精细地检查思维过程,不盲从、不轻信。在解决问题时能不断地验证所拟定的假设,获得独特的解决问题的方法,它和创造性思维存在着高度相关。本讲重点加强学生思维的严密性的训练,培养他们的创造性思维。 二、思维训练实例 (1) 检查思路是否正确,注意发现其中的错误。 例1 已知,若求的范围。 错误解法 由条件得 ②×2-①得 ①×2-②得 则 +得 错误分析 采用这种解法,忽视了这样一个事实:作为满足条件的函数,其值是同时受制约的。当取最大(小)值时,不一定取最大(小)值,因而整个解题思路是错误的。 正确解法 由题意有 解得: 把和的范围代入得 在本题中能够检查出解题思路错误,并给出正确解法,就体现了思维具有反思性。只有牢固地掌握基础知识,才能反思性地看问题。 例2 证明勾股定理:已知在中,,求证 错误证法 在中,而, ,即 错误分析 在现行的中学体系中,这个公式本身是从勾股定理推出来的。这种利用所要证明的结论,作为推理的前提条件,叫循环论证。循环论证的错误是在不知不觉中产生的,而且不易发觉。因此,在学习中对所学的每个公式、法则、定理,既要熟悉它们的内容,又要熟悉它们的证明方法和所依据的论据。这样才能避免循环论证的错误。发现本题犯了循环论证的错误,正是思维具有反思性的体现。 (2) 验算的训练 验算是解题后对结果进行检验的过程。通过验算,可以检查解题过程的正确性,增强思维的反思性。 例3 已知数列的前项和,求 错误解法 错误分析 显然,当时,,错误原因,没有注意公式成立的条件是因此在运用时,必须检验时的情形。即: 例4 实数为何值时,圆与抛物线有两个公共点。 错误解法 将圆与抛物线 联立,消去, 得 ① 因为有两个公共点,所以方程①有两个相等正根,得 解之,得 错误分析 (如图2-2-1;2-2-2)显然,当时,圆与抛物线有两个公共点。 x y O 图2-2-2 x y O 图2-2-1 要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根。 当方程①有一正根、一负根时,得解之,得 因此,当或时,圆与抛物线有两个公共点。 思考题:实数为何值时,圆与抛物线, (1) 有一个公共点; (2) 有三个公共点; (3) 有四个公共点; (4) 没有公共点。 养成验算的习惯,可以有效地增强思维反思性。如:在解无理方程、无理不等式;对数方程、对数不等式时,由于变形后方程或不等式两端代数式的定义域可能会发生变化,这样就有可能产生增根或失根,因此必须进行检验,舍弃增根,找回失根。 (3) 独立思考,敢于发表不同见解 受思维定势或别人提示的影响,解题时盲目附和,不能提出自己的看法,这不利于增强思维的反思性。因此,在解决问题时,应积极地独立思考,敢于对题目解法发表自己的见解,这样才能增强思维的反思性,从而培养创造性思维。 例5 解方程 考察方程两端相应的函数,它们的图象无交点。 所以此方程无解。 例6 设是方程的两个实根,则的最小值是( ) 思路分析 本例只有一个答案正确,设了3个陷阱,很容易上当。 利用一元二次方程根与系数的关系易得: 有的学生一看到,常受选择答案(A)的诱惑,盲从附和。这正是思维缺乏反思性的体现。如果能以反思性的态度考察各个选择答案的来源和它们之间的区别,就能从中选出正确答案。 原方程有两个实根, 当时,的最小值是8;当时,的最小值是18; 这时就可以作出正确选择,只有(B)正确。 第三章 数学思维的严密性 一、概述 在中学数学中,思维的严密性表现为思维过程服从于严格的逻辑规则,考察问题时严格、准确,进行运算和推理时精确无误。数学是一门具有高度抽象性和精密逻辑性的科学,论证的严密性是数学的根本特点之一。但是,由于认知水平和心里特征等因素的影响,中学生的思维过程常常出现不严密现象,主要表现在以下几个方面: 概念模糊 概念是数学理论体系中十分重要的组成部分。它是构成判断、推理的要素。因此必须弄清概念,搞清概念的内涵和外延,为判断和推理奠定基础。概念不清就容易陷入思维混乱,产生错误。 判断错误 判断是对思维对象的性质、关系、状态、存在等情况有所断定的一种思维形式。数学中的判断通常称为命题。在数学中,如果概念不清,很容易导致判断错误。例如,“函数是一个减函数”就是一个错误判断。 推理错误 推理是运用已知判断推导出新的判断的思维形式。它是判断和判断的联合。任何一个论证都是由推理来实现的,推理出错,说明思维不严密。 例如,解不等式 解 或 这个推理是错误的。在由推导时,没有讨论的正、负,理由不充分,所以出错。 二、思维训练实例 思维的严密性是学好数学的关键之一。训练的有效途径之一是查错。 (1) 有关概念的训练 概念是抽象思维的基础,数学推理离不开概念。“正确理解数学概念是掌握数学基础知识的前提。” 例1、 不等式 错误解法 错误分析 当时,真数且在所求的范围内(因 ),说明解法错误。原因是没有弄清对数定义。此题忽视了“对数的真数大于零”这一条件造成解法错误,表现出思维的不严密性。 正确解法 例2、 求过点的直线,使它与抛物线仅有一个交点。 错误解法 设所求的过点的直线为,则它与抛物线的交点为 ,消去得: 整理得 直线与抛物线仅有一个交点, 解得所求直线为 错误分析 此处解法共有三处错误: 第一,设所求直线为时,没有考虑与斜率不存在的情形,实际上就是承认了该直线的斜率是存在的,且不为零,这是不严密的。 第二,题中要求直线与抛物线只有一个交点,它包含相交和相切两种情况,而上述解法没有考虑相切的情况,只考虑相交的情况。原因是对于直线与抛物线“相切”和“只有一个交点”的关系理解不透。 第三,将直线方程与抛物线方程联立后得一个一元二次方程,要考虑它的判别式,所以它的二次项系数不能为零,即而上述解法没作考虑,表现出思维不严密。 正确解法 当所求直线斜率不存在时,即直线垂直轴,因为过点,所以即轴,它正好与抛物线相切。 当所求直线斜率为零时,直线为平行轴,它正好与抛物线只有一个交点。 设所求的过点的直线为则 , 令解得所求直线为 综上,满足条件的直线为: (2) 判断的训练 造成判断错误的原因很多,我们在学习中,应重视如下几个方面。 ①注意定理、公式成立的条件 数学上的定理和公式都是在一定条件下成立的。如果忽视了成立的条件,解题中难免出现错误。 例3、 实数,使方程至少有一个实根。 错误解法 方程至少有一个实根, 或 错误分析 实数集合是复数集合的真子集,所以在实数范围内成立的公式、定理,在复数范围内不一定成立,必须经过严格推广后方可使用。一元二次方程根的判别式是对实系数一元二次方程而言的,而此题目盲目地把它推广到复系数一元二次方程中,造成解法错误。 正确解法 设是方程的实数根,则 由于都是实数, 解得 ②注意充分条件、必要条件和充分必要条件在解题中的运用 我们知道: 如果成立,那么成立,即,则称是的充分条件。 如果成立,那么成立,即,则称是的必要条件。 如果,则称是的充分必要条件。 充分条件和必要条件中我们的学习中经常遇到。像讨论方程组的解,求满足条件的点的轨迹等等。但充分条件和必要条件中解题中的作用不同,稍用疏忽,就会出错。 例5 解不等式 错误解法 要使原不等式成立,只需 解得 错误分析 不等式成立的充分必要条件是:或 原不等式的解法只考虑了一种情况,而忽视了另一种情况,所考虑的情况只是原不等式成立的充分条件,而不是充分必要条件,其错误解法的实质,是把充分条件当成了充分必要条件。 正确解法 要使原不等式成立,则 ·P · C(3,0) y x O 图3-2-1 M N 或 ,或 · 原不等式的解集为 例6(轨迹问题)求与轴相切于右侧,并与 ⊙也相切的圆的圆心 的轨迹方程。 错误解法 如图3-2-1所示, 已知⊙C的方程为 设点为所求轨迹上任意一点,并且⊙P与轴相切于M点, 与⊙C相切于N点。根据已知条件得 ,即 化简得 错误分析 本题只考虑了所求轨迹的纯粹性(即所求的轨迹上的点都满足条件),而没有考虑所求轨迹的完备性(即满足条件的点都在所求的轨迹上)。事实上,符合题目条件的点的坐标并不都满足所求的方程。从动圆与已知圆内切,可以发现以轴正半轴上任一点为圆心,此点到原点的距离为半径(不等于3)的圆也符合条件,所以也是所求的方程。即动圆圆心的轨迹方程是 。因此,在求轨迹时,一定要完整的、细致地、周密地分析问题,这样,才能保证所求轨迹的纯粹性和完备性。 ③防止以偏概全的错误 以偏概全是指思考不全面,遗漏特殊情况,致使解答不完全,不能给出问题的全部答案,从而表现出思维的不严密性。 例7 设等比数列的全项和为.若,求数列的公比. 错误解法 错误分析 在错解中,由 时,应有在等比数列中,是显然的,但公比完全可能为1,因此,在解题时应先讨论公比的情况,再在的情况下,对式子进行整理变形。 正确解法 若,则有 但,即得与题设矛盾,故. 又依题意 可得 即 因为,所以所以 所以 说明 此题为1996年全国高考文史类数学试题第(21)题,不少考生的解法同错误解法,根据评分标准而痛失2分。 ④避免直观代替论证 我们知道直观图形常常为我们解题带来方便。但是,如果完全以图形的直观联系为依据来进行推理,这就会使思维出现不严密现象。 例8 (如图3-2-2),具有公共轴的两个直角坐标平面和所成的二面角等于.已知内的曲线的方程是,求曲线在内的射影的曲线方程。 错误解法 依题意,可知曲线是抛物线, 在内的焦点坐标是 因为二面角等于, 且所以 设焦点在内的射影是,那么,位于轴上, 从而 所以所以点是所求射影的焦点。依题意,射影是一条抛物线,开口向右,顶点在原点。 所以曲线在内的射影的曲线方程是 错误分析 上述解答错误的主要原因是,凭直观误认为 。 正确解法 在内,设点是曲线上任意一点 O · 图3-2-3 M N H (如图3-2-3)过点作,垂足为, 过作轴,垂足为连接, 则轴。所以是二面角 的平面角,依题意,. 在 又知轴(或与重合), 轴(或与重合),设, 则 因为点在曲线上,所以 O · 图3-2-2 即所求射影的方程为 (3) 推理的训练 数学推理是由已知的数学命题得出新命题的基本思维形式,它是数学求解的核心。以已知的真实数学命题,即定义、公理、定理、性质等为依据,选择恰当的解题方法,达到解题目标,得出结论的一系列推理过程。在推理过程中,必须注意所使用的命题之间的相互关系(充分性、必要性、充要性等),做到思考缜密、推理严密。 例9 设椭圆的中心是坐标原点,长轴在轴上,离心率,已知点到这个椭圆上的最远距离是,求这个椭圆的方程。 错误解法 依题意可设椭圆方程为 则 , 所以 ,即 设椭圆上的点到点的距离为, 则 所以当时,有最大值,从而也有最大值。 所以 ,由此解得: 于是所求椭圆的方程为 错解分析 尽管上面解法的最后结果是正确的,但这种解法却是错误的。事实上,由于点在椭圆上,所以有,因此在求的最大值时,应分类讨论。即: 若,则当时,(从而)有最大值。 于是从而解得 所以必有,此时当时,(从而)有最大值, 所以,解得 于是所求椭圆的方程为 例10 求的最小值 错解 正确解法 取正常数,易得 其中“”取“=”的充要条件是 因此,当 第四章 数学思维的开拓性 一、概述 数学思维开拓性指的是对一个问题能从多方面考虑;对一个对象能从多种角度观察;对一个题目能想出多种不同的解法,即一题多解。 “数学是一个有机的整体,它的各个部分之间存在概念的亲缘关系。我们在学习每一分支时,注意了横向联系,把亲缘关系结成一张网,就可覆盖全部内容,使之融会贯通”,这里所说的横向联系,主要是靠一题多解来完成的。通过用不同的方法解决同一道数学题,既可以开拓解题思路,巩固所学知识;又可激发学习数学的兴趣和积极性,达到开发潜能,发展智力,提高能力的目的。从而培养创新精神和创造能力。 在一题多解的训练中,我们要密切注意每种解法的特点,善于发现解题规律,从中发现最有意义的简捷解法。 数学思维的开拓性主要体现在: (1) 一题的多种解法 (2) 一题的多种解释 如“1”这个数字,它可以根据具体情况变成各种形式,使解题变得简捷。“1”可以变换为:,等等。 1. 思维训练实例 例1 已知求证: 分析1 用比较法。本题只要证为了同时利用两个已知条件,只需要观察到两式相加等于2便不难解决。 证法1 所以 分析2 运用分析法,从所需证明的不等式出发,运用已知的条件、定理和性质等,得出正确的结论。从而证明原结论正确。分析法其本质就是寻找命题成立的充分条件。因此,证明过程必须步步可逆,并注意书写规范。 证法2 要证 只需证 x M· y d 图4-2-1 O 即 因为 所以只需证 即 因为最后的不等式成立,且步步可逆。所以原不等式成立。 分析3 运用综合法(综合运用不等式的有关性质以及重要公式、定理(主要是平均值不等式)进行推理、运算,从而达到证明需求证的不等式成立的方法) 证法3 即 分析4 三角换元法:由于已知条件为两数平方和等于1的形式,符合三角函数同角关系中的平方关系条件,具有进行三角代换的可能,从而可以把原不等式中的代数运算关系转化为三角函数运算关系,给证明带来方便。 证法4 可设 分析5 数形结合法:由于条件可看作是以原点为圆心,半径为1的单位圆,而联系到点到直线距离公式,可得下面证法。 证法5 (如图4-2-1)因为直线经过 圆的圆心O,所以圆上任意一点 到直线的距离都小于或等于圆半径1, 即 简评 五种证法都是具有代表性的基本方法,也都是应该掌握的重要方法。除了证法4、证法5的方法有适应条件的限制这种局限外,前三种证法都是好方法。可在具体应用过程中,根据题目的变化的需要适当进行选择。 例2 如果求证:成等差数列。 分析1 要证,必须有成立才行。此条件应从已知条件中得出。故此得到直接的想法是展开已知条件去寻找转换。 证法1 故 ,即 成等差数列。 分析2 由于已知条件具有轮换对称特点,此特点的充分利用就是以换元去减少原式中的字母,从而给转换运算带来便利。 证法2 设则 于是,已知条件可化为: 所以成等差数列。 分析3 已知条件呈现二次方程判别式的结构特点引人注目,提供了构造一个适合上述条件的二次方程的求解的试探的机会。 证法3 当时,由已知条件知即成等差数列。 当时,关于的一元二次方程: 其判别式故方程有等根,显然=1为方程的一个根,从而方程的两根均为1, 由韦达定理知 即 成等差数列。 简评:证法1是常用方法,略嫌呆板,但稳妥可靠。证法2简单明了,是最好的解法,其换元的技巧有较大的参考价值。证法3引入辅助方程的方法,技巧性强,给人以新鲜的感受和启发。 例3 已知,求的最小值。 分析1 虽然所求函数的结构式具有两个字母,但已知条件恰有的关系式,可用代入法消掉一个字母,从而转换为普通的二次函数求最值问题。 解法1 设,则 二次项系数为故有最小值。 当时, 的最小值为 分析2 已知的一次式两边平方后与所求的二次式有密切关联,于是所求的最小值可由等式转换成不等式而求得。 解法2 即 即 当且仅当时取等号。 的最小值为 分析3 配方法是解决求最值问题的一种常用手段,利用已知条件结合所求式子,配方后得两个实数平方和的形式,从而达到求最值的目的。 解法3 设 当时,即的最小值为 分析4 因为已知条件和所求函数式都具有解析几何常见方程的特点,故可得到用解析法求解的启发。 1 1 O x y 图4-2-2 解法4 如图4-2-2,表示直线 表示原点到直线上的点的距离的平方。 显然其中以原点到直线的距离最短。 此时,即 所以的最小值为 注 如果设则问题还可转化为直线与圆有交点时,半径的最小值。 简评 几种解法都有特点和代表性。解法1是基本方法,解法2、3、4都紧紧地抓住题设条件的特点,与相关知识联系起来,所以具有灵巧简捷的优点,特别是解法4,形象直观,值得效仿。 例4 由圆外一点引圆的割线交圆于两点,求弦的中点的轨迹方程。 分析1 (直接法)根据题设条件列出几何等式,运用解析几何基本公式转化为代数等式,从而求出曲线方程。这里考虑在圆中有关弦中点的一些性质,圆心和弦中点的连线垂直于弦,可得下面解法。 图4-2-3 P M B A O y x 解法1 如图4-2-3,设弦的中点的坐标为,连接, 则,在中,由两点间的距离公式和勾股定理有 整理,得 其中 分析2 (定义法)根据题设条件,判断并确定轨迹的 曲线类型,运用待定系数法求出曲线方程。 解法2 因为是的中点,所以, 所以点的轨迹是以为直径的圆,圆心为, 半径为该圆的方程为: 化简,得 其中 分析3 (交轨法)将问题转化为求两直线的交点轨迹问题。因为动点可看作直线与割线的交点,而由于它们的垂直关系,从而获得解法。 解法3 设过点的割线的斜率为则过点的割线方程为:. 且过原点,的方程为 这两条直线的交点就是点的轨迹。两方程相乘消去化简,得:其中 分析4 (参数法)将动点坐标表示成某一中间变量(参数)的函数,再设法消去参数。由于动点随直线的斜率变化而发生变化,所以动点的坐标是直线斜率的函数,从而可得如下解法。 解法4 设过点的割线方程为: 它与圆的两个交点为,的中点为. 解方程组 利用韦达定理和中点坐标公式,可求得点的轨迹方程为: 其中 分析5 (代点法)根据曲线和方程的对应关系:点在曲线上则点的坐标满足方程。设而不求,代点运算。从整体的角度看待问题。这里由于中点的坐标与两交点通过中点公式联系起来,又点构成4点共线的和谐关系,根据它们的斜率相等,可求得轨迹方程。 解法5 设则 两式相减,整理,得 所以 即为的斜率,而对斜率又可表示为 化简并整理,得 其中 简评 上述五种解法都是求轨迹问题的基本方法。其中解法1、2、3局限于曲线是圆的条件,而解法4、5适用于一般的过定点且与二次曲线交于两点,求中点的轨迹问题。具有普遍意义,值得重视。对于解法5通常利用可较简捷地求出轨迹方程,比解法4计算量要小,要简捷得多。 第五章 数学解题思维过程 数学解题的思维过程是指从理解问题开始,从经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。 在数学中,通常可将解题过程分为四个阶段: 第一阶段是审题。包括认清习题的条件和要求,深入分析条件中的各个元素,在复杂的记忆系统中找出需要的知识信息,建立习题的条件、结论与知识和经验之间的联系,为解题作好知识上的准备。 第二阶段是寻求解题途径。有目的地进行各种组合的试验,尽可能将习题化为已知类型,选择最优解法,选择解题方案,经检验后作修正,最后确定解题计划。 第三阶段是实施计划。将计划的所有细节实际地付诸实现,通过与已知条件所选择的根据作对比后修正计划,然后着手叙述解答过程的方法,并且书写解答与结果。 第四阶段是检查与总结。求得最终结果以后,检查并分析结果。探讨实现解题的各种方法,研究特殊情况与局部情况,找出最重要的知识。将新知识和经验加以整理使之系统化。 所以:第一阶段的理解问题是解题思维活动的开始。 第二阶段的转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。 第三阶段的计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。 第四阶段的反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。 通过以下探索途径来提高解题能力: (1) 研究问题的条件时,在需要与可能的情况下,可画出相应图形或思路图帮助思考。因为这意味着你对题的整个情境有了清晰的具体的了解。 (2) 清晰地理解情境中的各个元素;一定要弄清楚其中哪些元素是给定了的,即已知的,哪些是所求的,即未知的。 (3) 深入地分析并思考习题叙述中的每一个符号、术语的含义,从中找出习题的重要元素,要图中标出(用直观符号)已知元素和未知元素,并试着改变一下题目中(或图中)各元素的位置,看看能否有重要发现。 (4) 尽可能从整体上理解题目的条件,找出它的特点,联想以前是否遇到过类似题目。 (5) 仔细考虑题意是否有其他不同理解。题目的条件有无多余的、互相矛盾的内容?是否还缺少条件? (6) 认真研究题目提出的目标。通过目标找出哪些理论的法则同题目或其他元素有联系。 (7) 如果在解题中发现有你熟悉的一般数学方法,就尽可能用这种方法的语言表示题的元素,以利于解题思路的展开。 以上途径特别有利于开始解题者能迅速“登堂入室”,找到解题的起步点。在制定计划寻求解法阶段,最好利用下面这套探索方法: (1) 设法将题目与你会解的某一类题联系起来。或者尽可能找出你熟悉的、最符合已知条件的解题方法。 (2) 记住:题的目标是寻求解答的主要方向。在仔细分析目标时即可尝试能否用你熟悉的方法去解题。 (3) 解了几步后可将所得的局部结果与问题的条件、结论作比较。用这种办法检查解题途径是否合理,以便及时进行修正或调整。 (4) 尝试能否局部地改变题目,换种方法叙述条件,故意简化题的条件(也就是编拟条件简化了的同类题)再求其解。再试试能否扩大题目条件(编一个更一般的题目),并将与题有关的概念用它的定义加以替代。 (5) 分解条件,尽可能将分成部分重新组合,扩大骒条件的理解。 (6) 尝试将题分解成一串辅助问题,依次解答这些辅助问题即可构成所给题目的解。 (7) 研究题的某些部分的极限情况,考察这样会对基本目标产生什么影响。 (8) 改变题的一部分,看对其他部分有何影响;依据上面的“影响”改变题的某些部分所出现的结果,尝试能否对题的目标作出一个“展望”。 (9) 万一用尽方法还是解不出来,你就从课本中或科普数学小册子中找一个同类题,研究分析其现成答案,从中找出解题的有益启示。 数学解题的技巧 为了使回想、联想、猜想的方向更明确,思- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中学数学 校本 教材 数学 思维 培养
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文