七年级数学下册期末压轴题考试题及答案培优试卷.doc
《七年级数学下册期末压轴题考试题及答案培优试卷.doc》由会员分享,可在线阅读,更多相关《七年级数学下册期末压轴题考试题及答案培优试卷.doc(50页珍藏版)》请在咨信网上搜索。
一、解答题 1.已知A(0,a)、B(b,0),且+(b﹣4)2=0. (1)直接写出点A、B的坐标; (2)点C为x轴负半轴上一点满足S△ABC=15. ①如图1,平移直线AB经过点C,交y轴于点E,求点E的坐标; ②如图2,若点F(m,10)满足S△ACF=10,求m. (3)如图3,D为x轴上B点右侧的点,把点A沿y轴负半轴方向平移,过点A作x轴的平行线l,在直线l上取两点G、H(点H在点G右侧),满足HB=8,GD=6.当点A平移到某一位置时,四边形BDHG的面积有最大值,直接写出面积的最大值. 2.已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E. (1)如图1,求证:HG⊥HE; (2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME; (3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数. 3.已知,.点在上,点在 上. (1)如图1中,、、的数量关系为: ;(不需要证明);如图2中,、、的数量关系为: ;(不需要证明) (2)如图 3中,平分,平分,且,求的度数; (3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数. 4.综合与实践 背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础. 已知:AM∥CN,点B为平面内一点,AB⊥BC于B. 问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系; (2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C; (3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC= . 5.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD于G,过点F作FH⊥MN交EG于H. (1)当点H在线段EG上时,如图1 ①当∠BEG=时,则∠HFG= . ②猜想并证明:∠BEG与∠HFG之间的数量关系. (2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系. 6.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由). (2)如图②中,AB//CD,又能得出什么结论?请直接写出结论 . (3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为 . 7.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把 (a≠0)记作aⓝ,读作“a的圈 n次方”. (初步探究) (1)直接写出计算结果:2③=___,()⑤=___; (2)关于除方,下列说法错误的是___ A.任何非零数的圈2次方都等于1; B.对于任何正整数n,1ⓝ=1; C.3④=4③; D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数. (深入思考) 我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? (1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式. (-3)④=___; 5⑥=___;(-)⑩=___. (2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于___; (3)算一算:÷(−)④×(−2)⑤−(−)⑥÷ 8.阅读型综合题 对于实数我们定义一种新运算(其中均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为,其中叫做线性数的一个数对.若实数 都取正整数,我们称这样的线性数为正格线性数,这时的叫做正格线性数的正格数对. (1)若,则 , ; (2)已知,.若正格线性数,(其中为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 9.对数运算是高中常用的一种重要运算,它的定义为:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=logaN,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,loga(M•N)=logaM+logaN. (I)解方程:logx4=2; (Ⅱ)log28= (Ⅲ)计算:(lg2)2+lg2•1g5+1g5﹣2018= (直接写答案) 10.阅读型综合题 对于实数我们定义一种新运算(其中均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为,其中叫做线性数的一个数对.若实数 都取正整数,我们称这样的线性数为正格线性数,这时的叫做正格线性数的正格数对. (1)若,则 , ; (2)已知,.若正格线性数,(其中为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 11.观察下来等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, …… 在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”: 52×_____=______×25; (2)设这类等式左边的两位数中,个位数字为a,十位数字为b,且2≤a+b≤9,则用含a,b的式子表示这类“数字对称等式”的规律是_______. 12.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences).这个常数叫做等比数列的公比,通常用字母q表示(q≠0). (1)观察一个等比列数1,,…,它的公比q= ;如果an(n为正整数)表示这个等比数列的第n项,那么a18= ,an= ; (2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行: 令S=1+2+4+8+16+…+230…① 等式两边同时乘以2,得2S=2+4+8+16++32+…+231…② 由② ﹣ ①式,得2S﹣S=231﹣1 即(2﹣1)S=231﹣1 所以 请根据以上的解答过程,求3+32+33+…+323的值; (3)用由特殊到一般的方法探索:若数列a1,a2,a3,…,an,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示an;如果这个常数q≠1,请用含a1,q,n的代数式表示a1+a2+a3+…+an. 13.已知、两点的坐标分别为,,将线段水平向右平移到,连接,,得四边形,且. (1)点的坐标为______,点D的坐标为______; (2)如图1,轴于,上有一动点,连接、,求最小时点位置及其坐标,并说明理由; (3)如图2,为轴上一点,若平分,且于,.求与之间的数量关系. 14.如图,已知//,点是射线上一动点(与点不重合),分别平分和,分别交射线于点. (1)当时,的度数是_______; (2)当,求的度数(用的代数式表示); (3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律. (4)当点运动到使时,请直接写出的度数. 15.如图,在长方形中,为平面直角坐标系的原点,点的坐标为,点的坐标为且、满足,点在第一象限内,点从原点出发,以每秒2个单位长度的速度沿着的线路移动. (1)点的坐标为___________;当点移动5秒时,点的坐标为___________; (2)在移动过程中,当点到轴的距离为4个单位长度时,求点移动的时间; (3)在的线路移动过程中,是否存在点使的面积是20,若存在直接写出点移动的时间;若不存在,请说明理由. 16.如果 x 是一个有理数,我们定义{x} 表示不小于 x 的最小整数. 如{3.2} = 4 , {-2.6} = -2 , {5} = 5 , {-6} = -6.由定义可知,任意一个有理数都能写成 x = {x} - b 的形式( 0≤b<1 ). (1)直接写出{x} 与 x , x + 1的大小关系; 提示1:用“不完全归纳法”推导{x} 与 x , x + 1的大小关系; 提示2:用“代数推理”的方法推导{x} 与 x , x + 1的大小关系. (2)根据(1)中的结论解决下列问题: ① 直接写出满足{3m + 7} = 4 的 m 取值范围; ② 直接写出方程{3.5n - 2} = 2n + 1 的解.. 17.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2). (1)直接写出点E的坐标 ; (2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题: ①当t= 秒时,点P的横坐标与纵坐标互为相反数; ②求点P在运动过程中的坐标,(用含t的式子表示,写出过程); ③当点P运动到CD上时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由. 18.如图,在平面直角坐标系中,O为坐标原点,点,其中满足,D为直线AB与轴的交点,C为线段AB上一点,其纵坐标为. (1)求的值; (2)当为何值时,和面积的相等; (3)若点C坐标为(-2,1),点M(m,-3)在第三象限内,满足,求m的取值范围. (注:表示的面积) 19.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a元收费,超过的部分按c元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示: 月份 用水量(m3) 收费(元) 3 5 7.5 4 9 27 (1)求a、c的值,并写出每月用水量不超过6米3和超过6米3时,水费与用水量之间的关系式; (2)已知某户5月份的用水量为8米3,求该用户5月份的水费. 20.数轴上有两个动点M,N,如果点M始终在点N的左侧,我们称作点M是点N的“追赶点”.如图,数轴上有2个点A,B,它们表示的数分别为-3,1,已知点M是点N的“追赶点”,且M,N表示的数分别为m,n. (1)由题意得:点A是点B的“追赶点”,AB=1-(-3)=4(AB表示线段AB的长,以下相同);类似的,MN=____________. (2)在A,M,N三点中,若其中一个点是另外两个点所构成线段的中点,请用含m的代数式来表示n. (3)若AM=BN,MN=BM,求m和n值. 21.一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k,那么称这个四位正整数为“k类诚勤数”,例如:2534,因为,所以2534 是“7类诚勤数”. (1)请判断7441和5436是否为“诚勤数”并说明理由; (2)若一个四位正整数A为“5类诚勤数”且能被13整除,请求出的所有可能取值. 22.已知,在平面直角坐标系中,三角形三个顶点的坐标分别为,,,轴,且、满足. (1)则______;______;______; (2)如图1,在轴上是否存在点,使三角形的面积等于三角形的面积?若存在,请求出点的坐标;若不存在,请说明理由; (3)如图2,连接交于点,点在轴上,若三角形的面积小于三角形的面积,直接写出的取值范围是______. 23.在平面直角坐标系中,把线段先向右平移h个单位,再向下平移1个单位得到线段(点A对应点C),其中分别是第三象限与第二象限内的点. (1)若,求C点的坐标; (2)若,连接,过点B作的垂线l ①判断直线l与x轴的位置关系,并说明理由; ②已知E是直线l上一点,连接,且的最小值为1,若点B,D及点都是关于x,y的二元一次方程的解为坐标的点,试判断是正数、负数还是0?并说明理由. 24.阅读感悟: 有些关于方程组的问题,要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题: 已知实数、满足①,②,求和的值. 本题常规思路是将①②两式联立组成方程组,解得、的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得,由①+②×2可得.这样的解题思想就是通常所说的“整体思想”. 解决问题: (1)已知二元一次方程组,则_______,_______; (2)某班级组织活动购买小奖品,买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元,则购买6支水笔、6块橡皮、6本记事本共需多少元? (3)对于实数、,定义新运算:,其中、、是常数,等式右边是通常的加法和乘法运算.已知,,那么_______. 25.若任意一个代数式,在给定的范围内求得的最大值和最小值恰好也在该范围内,则称这个代数式是这个范围的“湘一代数式”.例如:关于x的代数式,当-1£x£ 1时,代数式在x=±1时有最大值,最大值为1;在x=0时有最小值,最小值为0,此时最值1,0均在-1£x£1这个范围内,则称代数式是-1£x£1的“湘一代数式”. (1)若关于的代数式,当时,取得的最大值为 ,最小值为 ,所以代数式 (填“是”或“不是”)的“湘一代数式”. (2)若关于的代数式是的“湘一代数式”,求a的最大值与最小值. (3)若关于的代数式是的“湘一代数式”,求m的取值范围. 26.如图,在平面直角坐标系中,已知两点,且a、b满足点在射线AO上(不与原点重合).将线段AB平移到DC,点D与点A对应,点C与点B对应,连接BC,直线AD交y轴于点E.请回答下列问题: (1)求A、B两点的坐标; (2)设三角形ABC面积为,若4<≤7,求m的取值范围; (3)设,请给出,满足的数量关系式,并说明理由. 27.阅读材料: 如果x是一个有理数,我们把不超过x的最大整数记作[x] . 例如,[3.2]=3,[5]=5,[-2.1]=-3. 那么,x=[x]+a,其中0≤a<1. 例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9. 请你解决下列问题: (1)[4.8]= ,[-6.5]= ; (2)如果[x]=3,那么x的取值范围是 ; (3)如果[5x-2]=3x+1,那么x的值是 ; (4)如果x=[x]+a,其中0≤a<1,且4a= [x]+1,求x的值. 28.在平面直角坐标系xOy中.点A,B,P不在同一条直线上.对于点P和线段AB给出如下定义:过点P向线段AB所在直线作垂线,若垂足Q落在线段AB上,则称点P为线段AB的内垂点.若垂足Q满足|AQ-BQ|最小,则称点P为线段AB的最佳内垂点.已知点A(﹣2,1),B(1,1),C(﹣4,3). (1)在点P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,线段AB的内垂点为 ; (2)点M是线段AB的最佳内垂点且到线段AB的距离是2,则点M的坐标为 ; (3)点N在y轴上且为线段AC的内垂点,则点N的纵坐标n的取值范围是 ; (4)已知点D(m,0),E(m+4,0),F(2m,3).若线段CF上存在线段DE的最佳内垂点,求m的取值范围. 29.在平面直角坐标系中,对于任意两点,,如果,则称与互为“距点”.例如:点,点,由,可得点与互为“距点”. (1)在点,,中,原点的“距点”是_____(填字母); (2)已知点,点,过点作平行于轴的直线. ①当时,直线上点的“距点”的坐标为_____; ②若直线上存在点的“点”,求的取值范围. (3)已知点,,,的半径为,若在线段上存在点,在上存在点,使得点与点互为“距点”,直接写出的取值范围. 30.已知,在平面直角坐标系中,AB⊥x轴于点B,点A满足,平移线段AB使点A与原点重合,点B的对应点为点C. (1)则a= ,b= ,点C坐标为 ; (2)如图1,点D(m,n)在线段BC上,求m,n满足的关系式; (3)如图2,E是线段OB上一动点,以OB为边作∠BOG=∠AOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值. 【参考答案】***试卷处理标记,请不要删除 一、解答题 1.(1)A(0,5),B(4,0);(2)①E(0,﹣);②﹣2或6;(3)24. 【分析】 (1)根据二次根式和偶次幂的非负性得出a,b解答即可; (2)①根据三角形的面积公式得出点C的坐标,根据平行线的性质解答即可;②延长CA交直线l于点H(a,10),过点H作HM⊥x轴于点M,根据三角形面积公式解答即可; (3)平移GH到DM,连接HM,根据三角形面积公式解答即可. 【详解】 解:(1)∵,且,(b﹣4)2≥0, ∴a﹣5=0,b﹣4=0, 解得:a=5,b=4, ∴A(0,5),B(4,0); (2)①连接BE,如图1, ∵, ∴BC=6, ∴C(﹣2,0), ∵AB∥CE, ∴S△ABC=S△ABE, ∴, ∴AE=, ∴OE=, ∴E(0,﹣); ②∵F(m,10), ∴点F在过点G(0,10)且平行于x轴的直线l上, 延长CA交直线l于点H(a,10),过点H作HM⊥x轴于点M,则M(a,0),如图2, ∵S△HCM=S△ACO+S梯形AOMH, ∴, 解得:a=2, ∴H(2,10), ∵S△AFC=S△CFH﹣S△AFH, ∴, ∴FH=4, ∵H(2,10), ∴F(﹣2,10)或(6,10), ∴m=﹣2或6; (3)平移GH到DM,连接HM,则GD∥HM,GD=HM,如图3, 四边形BDHG的面积=△BHM的面积, 当BH⊥HM时,△BHM的面积最大,其最大值=. 【点睛】 本题主要考查图形与坐标及平移的性质,熟练掌握图形与坐标及平移的性质是解题的关键. 2.(1)见解析;(2)见解析;(3)40° 【分析】 (1)根据平行线的性质和判定解答即可; (2)过点H作HP∥AB,根据平行线的性质解答即可; (3)过点H作HP∥AB,根据平行线的性质解答即可. 【详解】 证明:(1)∵AB∥CD, ∴∠AFE=∠FED, ∵∠AGH=∠FED, ∴∠AFE=∠AGH, ∴EF∥GH, ∴∠FEH+∠H=180°, ∵FE⊥HE, ∴∠FEH=90°, ∴∠H=180°﹣∠FEH=90°, ∴HG⊥HE; (2)过点M作MQ∥AB, ∵AB∥CD, ∴MQ∥CD, 过点H作HP∥AB, ∵AB∥CD, ∴HP∥CD, ∵GM平分∠HGB, ∴∠BGM=∠HGM=∠BGH, ∵EM平分∠HED, ∴∠HEM=∠DEM=∠HED, ∵MQ∥AB, ∴∠BGM=∠GMQ, ∵MQ∥CD, ∴∠QME=∠MED, ∴∠GME=∠GMQ+∠QME=∠BGM+∠MED, ∵HP∥AB, ∴∠BGH=∠GHP=2∠BGM, ∵HP∥CD, ∴∠PHE=∠HED=2∠MED, ∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED), ∴∠GHE=∠2GME; (3)过点M作MQ∥AB,过点H作HP∥AB, 由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x, 由(2)可知:∠BGH=2∠MGH=10x, ∵∠AFE+∠BFE=180°, ∴∠AFE=180°﹣10x, ∵FK平分∠AFE, ∴∠AFK=∠KFE= ∠AFE, 即, 解得:x=5°, ∴∠BGH=10x=50°, ∵HP∥AB,HP∥CD, ∴∠BGH=∠GHP=50°,∠PHE=∠HED, ∵∠GHE=90°, ∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°, ∴∠HED=40°. 【点睛】 本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键. 3.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°. 【分析】 (1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解; (2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解; (3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解. 【详解】 解:(1)过E作EHAB,如图1, ∴∠BME=∠MEH, ∵ABCD, ∴HECD, ∴∠END=∠HEN, ∴∠MEN=∠MEH+∠HEN=∠BME+∠END, 即∠BME=∠MEN−∠END. 如图2,过F作FHAB, ∴∠BMF=∠MFK, ∵ABCD, ∴FHCD, ∴∠FND=∠KFN, ∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND, 即:∠BMF=∠MFN+∠FND. 故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. (2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. ∵NE平分∠FND,MB平分∠FME, ∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END, ∵2∠MEN+∠MFN=180°, ∴2(∠BME+∠END)+∠BMF−∠FND=180°, ∴2∠BME+2∠END+∠BMF−∠FND=180°, 即2∠BMF+∠FND+∠BMF−∠FND=180°, 解得∠BMF=60°, ∴∠FME=2∠BMF=120°; (3)∠FEQ的大小没发生变化,∠FEQ=30°. 由(1)知:∠MEN=∠BME+∠END, ∵EF平分∠MEN,NP平分∠END, ∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END, ∵EQNP, ∴∠NEQ=∠ENP, ∴∠FEQ=∠FEN−∠NEQ=(∠BME+∠END)−∠END=∠BME, ∵∠BME=60°, ∴∠FEQ=×60°=30°. 【点睛】 本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键. 4.(1);(2)见解析;(3)105° 【分析】 (1)通过平行线性质和直角三角形内角关系即可求解. (2)过点B作BG∥DM,根据平行线找角的联系即可求解. (3)利用(2)的结论,结合角平分线性质即可求解. 【详解】 解:(1)如图1,设AM与BC交于点O,∵AM∥CN, ∴∠C=∠AOB, ∵AB⊥BC, ∴∠ABC=90°, ∴∠A+∠AOB=90°, ∠A+∠C=90°, 故答案为:∠A+∠C=90°; (2)证明:如图2,过点B作BG∥DM, ∵BD⊥AM, ∴DB⊥BG, ∴∠DBG=90°, ∴∠ABD+∠ABG=90°, ∵AB⊥BC, ∴∠CBG+∠ABG=90°, ∴∠ABD=∠CBG, ∵AM∥CN, ∴∠C=∠CBG, ∴∠ABD=∠C; (3)如图3,过点B作BG∥DM, ∵BF平分∠DBC,BE平分∠ABD, ∴∠DBF=∠CBF,∠DBE=∠ABE, 由(2)知∠ABD=∠CBG, ∴∠ABF=∠GBF, 设∠DBE=α,∠ABF=β, 则∠ABE=α,∠ABD=2α=∠CBG, ∠GBF=∠AFB=β, ∠BFC=3∠DBE=3α, ∴∠AFC=3α+β, ∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°, ∴∠FCB=∠AFC=3α+β, △BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°, ∵AB⊥BC, ∴β+β+2α=90°, ∴α=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 故答案为:105°. 【点睛】 本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键. 5.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部 【分析】 (1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可. (2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可. 【详解】 解:(1)①∵EG平分∠BEF, ∴∠BEG=∠FEG, ∵FH⊥EF, ∴∠EFH=90°, ∵AB∥CD, ∴∠BEF+∠EFG=180°, ∴2∠BEG+90°+∠HFG=180°, ∴2∠BEG+∠HFG=90°, ∵∠BEG=36°, ∴∠HFG=18°. 故答案为:18°. ②结论:2∠BEG+∠HFG=90°. 理由:∵EG平分∠BEF, ∴∠BEG=∠FEG, ∵FH⊥EF, ∴∠EFH=90°, ∵AB∥CD, ∴∠BEF+∠EFG=180°, ∴2∠BEG+90°+∠HFG=180°, ∴2∠BEG+∠HFG=90°. (2)如图2中,结论:2∠BEG-∠HFG=90°. 理由:∵EG平分∠BEF, ∴∠BEG=∠FEG, ∵FH⊥EF, ∴∠EFH=90°, ∵AB∥CD, ∴∠BEF+∠EFG=180°, ∴2∠BEG+90°-∠HFG=180°, ∴2∠BEG-∠HFG=90°. 【点睛】 本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 6.(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180° 【分析】 (1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD; (2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D; (3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论. 【详解】 解:(1)过点E作EF//AB, ∴∠B=∠BEF. ∵∠BEF+∠FED=∠BED, ∴∠B+∠FED=∠BED. ∵∠B+∠D=∠E(已知), ∴∠FED=∠D. ∴CD//EF(内错角相等,两直线平行). ∴AB//CD. (2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB, ∵AB∥CD, ∴AB∥EM∥FN∥GH∥CD, ∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D, ∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D, 即∠E+∠G=∠B+∠F+∠D. 由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等, ∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D. 故答案为:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D. (3)如图,过点M作EF∥AB,过点N作GH∥AB, ∴∠APM+∠PME=180°, ∵EF∥AB,GH∥AB, ∴EF∥GH, ∴∠EMN+∠MNG=180°, ∴∠1+∠2+∠MNG =180°×2, 依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°. 故答案为:(n-1)•180°. 【点睛】 本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形. 7.初步探究:(1),8;(2)C;深入思考:(1),,;(2);(3)-5. 【分析】 初步探究: (1)根据除方运算的定义即可得出答案; (2)根据除方运算的定义逐一判断即可得出答案; 深入思考: (1)根据除方运算的定义即可得出答案; (2)根据(1)即可总结出(2)中的规律; (3)先按照除方的定义将每个数的圈n次方算出来,再根据有理数的混合运算法则即可得出答案. 【详解】 解:初步探究: (1)2③=2÷2÷2= ()⑤= (2)A:任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A错误; B:因为多少个1相除都是1,所以对于任何正整数n,1ⓝ都等于1,故选项B错误; C:3④=3÷3÷3÷3=,4③=4÷4÷4=,3④≠4③,故选项C正确; D:负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D错误; 故答案选择:C. 深入思考: (1)(-3)④=(-3)÷(-3)÷(-3) ÷(-3)= 5⑥=5÷5÷5÷5÷5÷5= (-)⑩= (2)aⓝ=a÷a÷a…÷a= (3)原式= = = =-5 【点睛】 本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键. 8.(1)5,3;(2)有正格数对,正格数对为 【分析】 (1)根据定义,直接代入求解即可; (2)将代入求出b的值,再将代入,表示出kx,再根据题干分析即可. 【详解】 解:(1)∵ ∴5,3 故答案为:5,3; (2)有正格数对. 将代入, 得出,, 解得,, ∴, 则 ∴ ∵,为正整数且为整数 ∴,,, ∴正格数对为:. 【点睛】 本题考查的知识点是实数的运算,理解新定义是解此题的关键. 9.(I) x=2;(Ⅱ) 3; (Ⅲ) -2017. 【分析】 (I)根据对数的定义,得出x2=4,求解即可; (Ⅱ)根据对数的定义求解即;; (Ⅲ)根据loga(M•N)=logaM+logaN求解即可. 【详解】 (I)解:∵logx4=2, ∴x2=4, ∴x=2或x=-2(舍去) (Ⅱ)解:∵8=23, ∴log28=3, 故答案为3; (Ⅲ)解:(lg2)2+lg2•1g5+1g5﹣2018 = lg2•( lg2+1g5) +1g5﹣2018 = lg2 +1g5﹣2018 =1-2018 =-2017 故答案为-2017. 【点睛】 本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义. 10.(1)5,3;(2)有正格数对,正格数对为 【分析】 (1)根据定义,直接代入求解即可; (2)将代入求出b的值,再将代入,表示出kx,再根据题干分析即可. 【详解】 解:(1)∵ ∴5,3 故答案为:5,3; (2)有正格数对. 将代入, 得出,, 解得,, ∴, 则 ∴ ∵,为正整数且为整数 ∴,,, ∴正格数对为:. 【点睛】 本题考查的知识点是实数的运算,理解新定义是解此题的关键. 11.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a]. 【分析】 (1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可; (2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可. 【详解】 解:(1)∵5+2=7, ∴左边的三位数是275,右边的三位数是572, ∴52×275=572×25, (2)左边的两位数是10b+a,三位数是100a+10(a+b)+b; 右边的两位数是10a+b,三位数是100b+10(a+b)+a; “数字对称等式”为:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a]. 故答案为275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a]. 【点睛】 本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键. 12.(1) , , ;(2);(3) 【分析】 (1)÷1即可求出q,根据已知数的特点求出a18和an即可; (2)根据已知先求出3S,再相减,即可得出答案; (3)根据(1)(2)的结果得出规律即可. 【详解】 解:(1)÷1=, a18=1×()17=,an=1×()n﹣1=, 故答案为:,,; (2)设S=3+32+33+…+323, 则3S=32+33+…+323+324, ∴2S=324﹣3, ∴S= (3)an=a1•qn﹣1,a1+a2+a3+…+an=. 【点睛】 本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度. 13.(1),;(2),理由见解析;(3) 【分析】 (1)根据已知条件求出AD和BC的长度,即可得到D、C的坐标; (2)连接BD与直线CG相交,其交点Q即为所求,然后根据求出 QC、QG后即可得到Q点坐标; (3)过H作HF∥AB,过C作CM∥ED,则根据已知条件、平行线的性质和角的有关知识可以得到 . 【详解】 (1)解:由题意可得四边形ABCD是平行四边形,且AD与BC间距离为1-(- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 七年 级数 下册 期末 压轴 考试题 答案 试卷
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文