上海民办张江集团学校七年级下册数学期末试卷试卷(word版含答案).doc
《上海民办张江集团学校七年级下册数学期末试卷试卷(word版含答案).doc》由会员分享,可在线阅读,更多相关《上海民办张江集团学校七年级下册数学期末试卷试卷(word版含答案).doc(33页珍藏版)》请在咨信网上搜索。
上海民办张江集团学校七年级下册数学期末试卷试卷(word版含答案) 一、解答题 1.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH. (1)如图1,求证:GFEH; (2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明. 2.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由). (2)如图②中,AB//CD,又能得出什么结论?请直接写出结论 . (3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为 . 3.如图,直线,一副直角三角板中,. (1)若如图1摆放,当平分时,证明:平分. (2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数. (4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长. (5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间. 4.如图,直线,点是、之间(不在直线,上)的一个动点. (1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由; (2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值; (3)如图3,若点是下方一点,平分, 平分,已知,求的度数. 5.已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0 (1)α= ,β= ;直线AB与CD的位置关系是 ; (2)如图2,若点G、H分别在射线MA和线段MF上,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论; (3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由. 二、解答题 6.[感知]如图①,,求的度数. 小乐想到了以下方法,请帮忙完成推理过程. 解:(1)如图①,过点P作. ∴(_____________), ∴, ∴________(平行于同一条直线的两直线平行), ∴_____________(两直线平行,同旁内角互补), ∴, ∴, ∴,即. [探究]如图②,,求的度数; [应用](1)如图③,在[探究]的条件下,的平分线和的平分线交于点G,则的度数是_________º. (2)已知直线,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接,若平分平分,且所在的直线交于点E.设,请直接写出的度数(用含的式子表示). 7.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视.若灯转动的速度是每秒2度,灯转动的速度是每秒1度.假定主道路是平行的,即,且. (1)填空:_________; (2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行? (3)如图2,若两灯同时转动,在灯射线到达之前.若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由. 8.已知,将一副三角板中的两块直角三角板如图1放置,,,,. (1)若三角板如图1摆放时,则______,______. (2)现固定的位置不变,将沿方向平移至点E正好落在上,如图2所示,与交于点G,作和的角平分线交于点H,求的度数; (3)现固定,将绕点A顺时针旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出的度数. 9.已知,如图①,∠BAD=50°,点C为射线AD上一点(不与A重合),连接BC. (1)[问题提出]如图②,AB∥CE,∠BCD=73 °,则:∠B= . (2)[类比探究]在图①中,探究∠BAD、∠B和∠BCD之间有怎样的数量关系?并用平行线的性质说明理由. (3)[拓展延伸]如图③,在射线BC上取一点O,过O点作直线MN使MN∥AD,BE平分∠ABC交AD于E点,OF平分∠BON交AD于F点,交AD于G点,当C点沿着射线AD方向运动时,∠FOG的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值. 10.已知直线,点分别为, 上的点. (1)如图1,若,, ,求与的度数; (2)如图2,若,, ,则_________; (3)若把(2)中“,, ”改为“,, ”,则_________.(用含的式子表示) 三、解答题 11.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________ (2)如图1,已知∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“梦想三角形”,为什么? (3)如图2,点D在△ABC的边上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“梦想三角形”,求∠B的度数. 12.小明在学习过程中,对教材中的一个有趣问题做如下探究: (习题回顾)已知:如图1,在中,,是角平分线,是高,、相交于点.求证:; (变式思考)如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由; (探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系. 13.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数. 小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移: (1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由; (2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系. 14.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”. (1)如图1,在中,,是的角平分线,求证:是“准互余三角形”; (2)关于“准互余三角形”,有下列说法: ①在中,若,,,则是“准互余三角形”; ②若是“准互余三角形”,,,则; ③“准互余三角形”一定是钝角三角形. 其中正确的结论是___________(填写所有正确说法的序号); (3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数. 15.已知在中,,点在上,边在上,在中,边在直线上,; (1)如图1,求的度数; (2)如图2,将沿射线的方向平移,当点在上时,求度数; (3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数. 【参考答案】 一、解答题 1.(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详 解析:(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详解】 (1)证明:, , , , ; (2)解:,理由如下: 如图2,过点作,过点作, , , ,, , 同理,, 平分,平分, ,, , 由(1)知,, , , , , . 【点睛】 此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键. 2.(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180° 【分析】 (1)过点E作EF//AB,利用平行线的性质则可得出 解析:(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180° 【分析】 (1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD; (2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D; (3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论. 【详解】 解:(1)过点E作EF//AB, ∴∠B=∠BEF. ∵∠BEF+∠FED=∠BED, ∴∠B+∠FED=∠BED. ∵∠B+∠D=∠E(已知), ∴∠FED=∠D. ∴CD//EF(内错角相等,两直线平行). ∴AB//CD. (2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB, ∵AB∥CD, ∴AB∥EM∥FN∥GH∥CD, ∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D, ∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D, 即∠E+∠G=∠B+∠F+∠D. 由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等, ∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D. 故答案为:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D. (3)如图,过点M作EF∥AB,过点N作GH∥AB, ∴∠APM+∠PME=180°, ∵EF∥AB,GH∥AB, ∴EF∥GH, ∴∠EMN+∠MNG=180°, ∴∠1+∠2+∠MNG =180°×2, 依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°. 故答案为:(n-1)•180°. 【点睛】 本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形. 3.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性 解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案; (4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可. 【详解】 (1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°, ∵ED平分∠PEF, ∴∠PEF=2∠PED=2∠DEF=2×60°=120°, ∵PQ∥MN, ∴∠MFE=180°−∠PEF=180°−120°=60°, ∴∠MFD=∠MFE−∠DFE=60°−30°=30°, ∴∠MFD=∠DFE, ∴FD平分∠EFM; (2)如图2,过点E作EK∥MN, ∵∠BAC=45°, ∴∠KEA=∠BAC=45°, ∵PQ∥MN,EK∥MN, ∴PQ∥EK, ∴∠PDE=∠DEK=∠DEF−∠KEA, 又∵∠DEF=60°. ∴∠PDE=60°−45°=15°, 故答案为:15°; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ, ∴∠LFA=∠BAC=45°,∠RHG=∠QGH, ∵FL∥MN,HR∥PQ,PQ∥MN, ∴FL∥PQ∥HR, ∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA, ∵∠FGQ和∠GFA的角平分线GH、FH相交于点H, ∴∠QGH=∠FGQ,∠HFA=∠GFA, ∵∠DFE=30°, ∴∠GFA=180°−∠DFE=150°, ∴∠HFA=∠GFA=75°, ∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°, ∴∠GFL=∠GFA−∠LFA=150°−45°=105°, ∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°, ∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°; (4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A, ∴D′A=DF,DD′=EE′=AF=5cm, ∵DE+EF+DF=35cm, ∴DE+EF+D′A+AF+DD′=35+10=45(cm), 即四边形DEAD′的周长为45cm; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°, 分三种情况: BC∥DE时,如图5,此时AC∥DF, ∴∠CAE=∠DFE=30°, ∴3t=30, 解得:t=10; BC∥EF时,如图6, ∵BC∥EF, ∴∠BAE=∠B=45°, ∴∠BAM=∠BAE+∠EAM=45°+45°=90°, ∴3t=90, 解得:t=30; BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R, ∵∠DRM=∠EAM+∠DFE=45°+30°=75°, ∴∠BKA=∠DRM=75°, ∵∠ACK=180°−∠ACB=90°, ∴∠CAK=90°−∠BKA=15°, ∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°, ∴3t=120, 解得:t=40, 综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行. 【点睛】 本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键. 4.(1)见解析;(2);(3)75° 【分析】 (1)根据平行线的性质、余角和补角的性质即可求解. (2)根据平行线的性质、对顶角的性质和平角的定义解答即可. (3)根据平行线的性质和角平分线的定义以 解析:(1)见解析;(2);(3)75° 【分析】 (1)根据平行线的性质、余角和补角的性质即可求解. (2)根据平行线的性质、对顶角的性质和平角的定义解答即可. (3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可. 【详解】 解:(1)∠C=∠1+∠2, 证明:过C作l∥MN,如下图所示, ∵l∥MN, ∴∠4=∠2(两直线平行,内错角相等), ∵l∥MN,PQ∥MN, ∴l∥PQ, ∴∠3=∠1(两直线平行,内错角相等), ∴∠3+∠4=∠1+∠2, ∴∠C=∠1+∠2; (2)∵∠BDF=∠GDF, ∵∠BDF=∠PDC, ∴∠GDF=∠PDC, ∵∠PDC+∠CDG+∠GDF=180°, ∴∠CDG+2∠PDC=180°, ∴∠PDC=90°-∠CDG, 由(1)可得,∠PDC+∠CEM=∠C=90°, ∴∠AEN=∠CEM, ∴, (3)设BD交MN于J. ∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°, ∴∠PBD=2∠PBC=50°,∠CAM=∠MAD, ∵PQ∥MN, ∴∠BJA=∠PBD=50°, ∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM, 由(1)可得,∠ACB=∠PBC+∠CAM, ∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°. 【点睛】 本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系. 5.(1)20,20,;(2);(3)的值不变, 【分析】 (1)根据,即可计算和的值,再根据内错角相等可证; (2)先根据内错角相等证,再根据同旁内角互补和等量代换得出; (3)作的平分线交的延长线于 解析:(1)20,20,;(2);(3)的值不变, 【分析】 (1)根据,即可计算和的值,再根据内错角相等可证; (2)先根据内错角相等证,再根据同旁内角互补和等量代换得出; (3)作的平分线交的延长线于,先根据同位角相等证,得,设,,得出,即可得. 【详解】 解:(1), ,, , ,, , ; 故答案为:20、20,; (2); 理由:由(1)得, , , , , , , ; (3)的值不变,; 理由:如图3中,作的平分线交的延长线于, , , ,, , , , 设,, 则有:, 可得, , . 【点睛】 本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键. 二、解答题 6.[感知]见解析;[探究]70°;[应用](1)35;(2)或 【分析】 [感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果; 解析:[感知]见解析;[探究]70°;[应用](1)35;(2)或 【分析】 [感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果; [探究]过点P作PM∥AB,根据AB∥CD,PM∥CD,进而根据平行线的性质即可求∠EPF的度数; [应用](1)如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数; (2)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解. 【详解】 解:[感知]如图①,过点P作PM∥AB, ∴∠1=∠AEP=40°(两直线平行,内错角相等) ∵AB∥CD, ∴PM∥CD(平行于同一条直线的两直线平行), ∴∠2+∠PFD=180°(两直线平行,同旁内角互补), ∴∠PFD=130°(已知), ∴∠2=180°-130°=50°, ∴∠1+∠2=40°+50°=90°,即∠EPF=90°; [探究]如图②,过点P作PM∥AB, ∴∠MPE=∠AEP=50°, ∵AB∥CD, ∴PM∥CD, ∴∠PFC=∠MPF=120°, ∴∠EPF=∠MPF-∠MPE=120°-50°=70°; [应用](1)如图③所示, ∵EG是∠PEA的平分线,FG是∠PFC的平分线, ∴∠AEG=∠AEP=25°,∠GFC=∠PFC=60°, 过点G作GM∥AB, ∴∠MGE=∠AEG=25°(两直线平行,内错角相等) ∵AB∥CD(已知), ∴GM∥CD(平行于同一条直线的两直线平行), ∴∠GFC=∠MGF=60°(两直线平行,内错角相等). ∴∠G=∠MGF-∠MGE=60°-25°=35°. 故答案为:35. (2)当点A在点B左侧时, 如图,故点E作EF∥AB,则EF∥CD, ∴∠ABE=∠BEF,∠CDE=∠DEF, ∵平分平分,, ∴∠ABE=∠BEF=,∠CDE=∠DEF=, ∴∠BED=∠BEF+∠DEF=; 当点A在点B右侧时, 如图,故点E作EF∥AB,则EF∥CD, ∴∠DEF=∠CDE,∠ABG=∠BEF, ∵平分平分,, ∴∠DEF=∠CDE=,∠ABG=∠BEF=, ∴∠BED=∠DEF-∠BEF=; 综上:∠BED的度数为或. 【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质. 7.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD 【分析】 (1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数; (2)设A灯转动t秒, 解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD 【分析】 (1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数; (2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110; (3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化. 【详解】 解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2, ∴∠BAN=180°×=72°, 故答案为:72; (2)设A灯转动t秒,两灯的光束互相平行, ①当0<t<90时,如图1, ∵PQ∥MN, ∴∠PBD=∠BDA, ∵AC∥BD, ∴∠CAM=∠BDA, ∴∠CAM=∠PBD ∴2t=1•(30+t), 解得 t=30; ②当90<t<150时,如图2, ∵PQ∥MN, ∴∠PBD+∠BDA=180°, ∵AC∥BD, ∴∠CAN=∠BDA ∴∠PBD+∠CAN=180° ∴1•(30+t)+(2t-180)=180, 解得 t=110, 综上所述,当t=30秒或110秒时,两灯的光束互相平行; (3)∠BAC和∠BCD关系不会变化. 理由:设灯A射线转动时间为t秒, ∵∠CAN=180°-2t, ∴∠BAC=72°-(180°-2t)=2t-108°, 又∵∠ABC=108°-t, ∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°, ∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°, ∴∠BAC:∠BCD=2:1, 即∠BAC=2∠BCD, ∴∠BAC和∠BCD关系不会变化. 【点睛】 本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补. 8.(1)15°;150°;(2)67.5°;(3)30°或90°或120° 【分析】 (1)根据平行线的性质和三角板的角的度数解答即可; (2)根据平行线的性质和角平分线的定义解答即可; (3)分当B 解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120° 【分析】 (1)根据平行线的性质和三角板的角的度数解答即可; (2)根据平行线的性质和角平分线的定义解答即可; (3)分当BC∥DE时,当BC∥EF时,当BC∥DF时,三种情况进行解答即可. 【详解】 解:(1)作EI∥PQ,如图, ∵PQ∥MN, 则PQ∥EI∥MN, ∴∠α=∠DEI,∠IEA=∠BAC, ∴∠DEA=∠α+∠BAC, ∴α= DEA -∠BAC=60°-45°=15°, ∵E、C、A三点共线, ∴∠β=180°-∠DFE=180°-30°=150°; 故答案为:15°;150°; (2)∵PQ∥MN, ∴∠GEF=∠CAB=45°, ∴∠FGQ=45°+30°=75°, ∵GH,FH分别平分∠FGQ和∠GFA, ∴∠FGH=37.5°,∠GFH=75°, ∴∠FHG=180°-37.5°-75°=67.5°; (3)当BC∥DE时,如图1, ∵∠D=∠C=90, ∴AC∥DF, ∴∠CAE=∠DFE=30°, ∴∠BAM+∠BAC=∠MAE+∠CAE, ∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°; 当BC∥EF时,如图2, 此时∠BAE=∠ABC=45°, ∴∠BAM=∠BAE+∠EAM=45°+45°=90°; 当BC∥DF时,如图3, 此时,AC∥DE,∠CAN=∠DEG=15°, ∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°. 综上所述,∠BAM的度数为30°或90°或120°. 【点睛】 本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点. 9.(1);(2),见解析;(3)不变, 【分析】 (1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数; (2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用 解析:(1);(2),见解析;(3)不变, 【分析】 (1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数; (2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用(2)的结论和平行线的性质、角平分线的性质,可求出的度数,可得结论. 【详解】 (1)因为∥, 所以, 因为∠BCD=73 °, 所以, 故答案为: (2), 如图②,过点作∥, 则,. 因为, 所以, (3)不变, 设, 因为平分, 所以. 由(2)的结论可知,且, 则:. 因为∥, 所以, 因为平分, 所以. 因为∥, 所以, 所以. 【点睛】 本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系. 10.(1)120º,120º;(2)160;(3) 【分析】 (1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果; (2)同理(1)的求法, 解析:(1)120º,120º;(2)160;(3) 【分析】 (1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果; (2)同理(1)的求法,根据,, 求解即可; (3)同理(1)的求法,根据,, 求解即可; 【详解】 解:(1)如图示,分别过点作,, ∵, ∴, ∴, ∴, ∴, ∵, ∴, 又∵, ∴,, ∴. (2)如图示,分别过点作,, ∵,∴, ∴, ∴, ∴, ∵, ∴, 又∵, ∴,, ∴. 故答案为:160; (3)同理(1)的求法 ∵,∴, ∴, ∴, ∴, ∵, ∴, 又∵, ∴, , ∴. 故答案为:. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键. 三、解答题 11.(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=. 【分析】 (1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°, 解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=. 【分析】 (1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可; (2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可; (3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可. 【详解】 解:当108°的角是另一个内角的3倍时, 最小角为180°﹣108°﹣108÷3°=36°, 当180°﹣108°=72°的角是另一个内角的3倍时, 最小角为72°÷(1+3)=18°, 因此,这个“梦想三角形”的最小内角的度数为36°或18°. 故答案为:18°或36°. (2)△AOB、△AOC都是“梦想三角形” 证明:∵AB⊥OM, ∴∠OAB=90°, ∴∠ABO=90°﹣∠MON=30°, ∴∠OAB=3∠ABO, ∴△AOB为“梦想三角形”, ∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON, ∴∠OAC=80°﹣60°=20°, ∴∠AOB=3∠OAC, ∴△AOC是“梦想三角形”. (3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°, ∴∠EFC=∠ADC, ∴AD∥EF, ∴∠DEF=∠ADE, ∵∠DEF=∠B, ∴∠B=∠ADE, ∴DE∥BC, ∴∠CDE=∠BCD, ∵AE平分∠ADC, ∴∠ADE=∠CDE, ∴∠B=∠BCD, ∵△BCD是“梦想三角形”, ∴∠BDC=3∠B,或∠B=3∠BDC, ∵∠BDC+∠BCD+∠B=180°, ∴∠B=36°或∠B=. 【点睛】 本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键. 12.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】 [习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可 解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】 [习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可证明; [变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF、再根据直角三角形的性质和等角的余角相等即可得出=; [探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE,由此可证∠M+∠CFE=90°. 【详解】 [习题回顾]证明:∵∠ACB=90°,CD是高, ∴∠B+∠CAB=90°,∠ACD+∠CAB=90°, ∴∠B=∠ACD, ∵AE是角平分线, ∴∠CAF=∠DAF, ∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B, ∴∠CEF=∠CFE; [变式思考]相等,理由如下: 证明:∵AF为∠BAG的角平分线, ∴∠GAF=∠DAF, ∵∠CAE=∠GAF, ∴∠CAE=∠DAF, ∵CD为AB边上的高,∠ACB=90°, ∴∠ADC=90°, ∴∠ADF=∠ACE=90°, ∴∠DAF+∠F=90°,∠E+∠CAE=90°, ∴∠CEF=∠CFE; [探究延伸]∠M+∠CFE=90°, 证明:∵C、A、G三点共线 AE、AN为角平分线, ∴∠EAN=90°, 又∵∠GAN=∠CAM, ∴∠M+∠CEF=90°, ∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B, ∴∠CEF=∠CFE, ∴∠M+∠CFE=90°. 【点睛】 本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键. 13.(1),理由见解析; (2)当点P在B、O两点之间时,; 当点P在射线AM上时,. 【分析】 (1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C 解析:(1),理由见解析; (2)当点P在B、O两点之间时,; 当点P在射线AM上时,. 【分析】 (1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案; (2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论. 【详解】 解:(1)∠CPD=∠α+∠β,理由如下: 如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE+∠CPE=∠α+∠β. (2)当点P在A、M两点之间时,∠CPD=∠β-∠α. 理由:如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠CPE-∠DPE=∠β-∠α; 当点P在B、O两点之间时,∠CPD=∠α-∠β. 理由:如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE-∠CPE=∠α-∠β. 【点睛】 本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决. 14.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110° 【分析】 (1)由和是的角平分线,证明即可; (2)根据“准互余三- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海 民办 集团 学校 年级 下册 数学 期末试卷 试卷 word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文