厦门双十中学初中部数学八年级上册期末试卷含答案[001].doc
《厦门双十中学初中部数学八年级上册期末试卷含答案[001].doc》由会员分享,可在线阅读,更多相关《厦门双十中学初中部数学八年级上册期末试卷含答案[001].doc(15页珍藏版)》请在咨信网上搜索。
厦门双十中学初中部数学八年级上册期末试卷含答案 一、选择题 1、下列图形中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D. 2、进入寒冷的腊月,云南多地下起了小雪,据测定,某雪花的直径约为0.0000015米,将数据0.0000015用科学记数法表示为( ) A. B. C. D. 3、下列运算:(1);(2);(3);(4).其中错误的个数是( ) A.1个 B.2个 C.3个 D.4个 4、式子有意义,则的取值范围是( ) A. B.且 C. D.且 5、下列从左到右的变形,属于因式分解的是( ) A. B. C. D. 6、下列等式成立的是( ) A. B. C. D. 7、如图,点E,C,F,B在同一条直线上,ACDF,EC=BF,则添加下列条件中的一个条件后,不一定能判定△ABC≌△DEF的是( ) A.AC=DF B.AB=DE C.∠A=∠D D.ABDE 8、若关于x的分式方程的解是正数,则m的取值范围是( ) A. B. C.且 D.且 9、等腰三角形的一个外角等于130°,则它的顶角为( ) A.50° B.80° C.50°或80° D.40°或65° 二、填空题 10、如图,将长方形ABCD的各边向外作正方形,若四个正方形周长之和为24,面积之和为12,则长方形ABCD的面积为( ) A.4 B. C. D.6 11、若分式的值为0,则x的值是 _____. 12、已知,点、两点关于轴对称,则的值是_____. 13、如图,数轴上有四条线段分别标有①②③④,若x为正整数,则表示的值的点落在线段_________上(填序号). 14、若,,则________. 15、如图,Rt△ABC中,∠C=90°,AC=3,BC=4,EF垂直平分AB,点P为直线EF上一动点,则△APC周长的最小值为_____. 16、一个多边形的内角和与外角的相等,它是__________边形. 17、若,,则________________. 18、在学习完“探索全等三角形全等的条件”一节后,一同学总结出很多全等三角形的模型,他设计了以下问题给同桌解决:如图,做一个“U”字形框架PABQ,其中AB=42cm,AP,BQ足够长,PA⊥AB于点A,QB⊥AB于点B,点M从B出发向A运动,同时点N从B出发向Q运动,点M,N运动的速度之比为3∶4,当两点运动到某一瞬间同时停止,此时在射线AP上取点C,使△ACM与△BMN全等,则线段AC的长为________cm. 三、解答题 19、分解因式: (1); (2). 20、化简:. 21、如图,D是△ABC的边AC上一点,点E在AC的延长线上,ED=AC,过点E作EF∥AB,并截取EF=AB,连接DF.求证:DF=CB. 22、问题引入: (1)如图1,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC= (用表示);如图2,∠COB=∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC= (用表示); 拓展研究: (2)如图3,∠CBO=∠DBC,∠BCO=∠ECB,∠A=,求∠BOC的度数(用表示),并说明理由; (3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=,∠BCO=∠ECB,∠A=,请猜想∠BOC= (直接写出答案). 23、某工程队准备修建一条长3600m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前3天完成这一任务,原计划每天修建盲道多少米? 24、数学活动课上,老师准备了若干个如图1的三种纸片,种纸片边长为的正方形,中纸片是边长为的正方形,种纸片是长为、宽为的长方形.并用种纸片一张,种纸片一张,种纸片两张拼成如图2的大正方形. (1)请问两种不同的方法求图2大正方形的面积. 方法1:____________________;方法2:________________________; (2)观察图2,请你写出下列三个代数式:之间的等量关系. _______________________________________________________; (3)根据(2)题中的等量关系,解决如下问题: ①已知:,求的值; ②已知,则的值是____. 25、阅读材料1: 对于两个正实数,由于,所以,即,所以得到,并且当时, 阅读材料2: 若,则 ,因为,,所以由阅读材料1可得:,即的最小值是2,只有时,即=1时取得最小值. 根据以上阅读材料,请回答以下问题: (1)比较大小 (其中≥1); -2(其中<-1) (2)已知代数式变形为,求常数的值 (3)当= 时,有最小值,最小值为 (直接写出答案). 一、选择题 1、C 【解析】C 【分析】根据轴对称图形和中心对称图形的概念求解即可. 【详解】解:A、不是轴对称图形,是中心对称图形,故此选项不符合题意; B、是轴对称图形,不是中心对称图形,故此选项不符合题意; C、是轴对称图形,也是中心对称图形,故此选项符合题意; D、是轴对称图形,不是中心对称图形,故此选项不符合题意. 故选:C. 【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分对折后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合. 2、C 【解析】C 【分析】结合题意,根据科学记数法和负整数指数幂的性质计算,即可得到答案. 【详解】数据0.0000015用科学记数法表示为: 故选:C. 【点睛】本题考查了科学记数法和负整数指数幂的知识;解题的关键是熟练掌握科学记数法定义:科学记数法是指把一个数表示成形式,其中n为整数,且a满足1≤|a|<10;对小于1的数,用科学记数法表示为的形式. 3、D 【解析】D 【分析】根据合并同类项、同底数幂的乘法运算法则来求解. 【详解】(1),原选项计算错误,此项符合题意; (2),原选项计算错误,此项符合题意; (3),原选项计算错误,此项符合题意; (4),原选项计算错误,此项符合题意, 综上所述,错误的有4个. 故选:D. 【点睛】本题主要考查了合并同类项、同底数幂的乘法,理解合并同类项和同底数幂乘法的运算法则是解答关键. 4、B 【解析】B 【分析】根据二次根式有意义的条件和分式有意义的条件列式求解即可. 【详解】解:式子有意义,则且, 解得:且, 故选:B. 【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,熟知二次根式有意义被开方数非负,分式有意义分母不为零是解题的关键. 5、B 【解析】B 【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案. 【详解】解:A、是整式的乘法,故A不是因式分解,不符合题意; B、提取公因式分解因式,故B正确,符合题意. C、没转化成整式积的形式,故C不是因式分解,不符合题意; D、是整式的乘法,故D不是因式分解,不符合题意. 故选:B. 【点睛】本题考查了因式分解的定义,掌握因式分解就是把多项式转化成几个整式积的形式是解题关键. 6、B 【解析】B 【分析】根据分式的基本性质以及分式的加法运算法则进行判断即可. 【详解】解:A.,故此选项错误,不符合题意; B.,故此选项正确,符合题意; C.,故此选项错误,不符合题意; D.,故此选项错误,不符合题意; 故选:B. 【点睛】本题考查了分式的基本性质以及分式的加减法,熟练掌握分式的基本性质是解本题的关键. 7、B 【解析】B 【分析】先证明∠ACB=∠DFE,EF=BC,然后根据全等三角形的判定方法对各选项进行判断. 【详解】解:∵AC//DF, ∴∠ACB=∠DFE, ∵EC=BF, ∴EC+CF=BF+CF, 即EF=BC, ∴当添加AC=DF时,可根据“SAS”判定△ABC≌△DEF; 当添加∠A=∠D时,可根据“AAS”判定△ABC≌△DEF; 当添加AB∥DE时,∠B=∠E,可根据“ASA”判定△ABC≌△DEF. 故选:B. 【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用哪一种方法,取决于题目中的已知条件. 8、C 【解析】C 【分析】解分式方程,得到含有m的方程的解,根据“方程的解是正数”,结合分式方程的分母不等于零,得到关于m的不等式,解之即可. 【详解】解:方程两边同时乘以x-1得:2x+m=3(x-1), 解得:x=m+3, ∵x-1≠0, ∴x≠1, 即m+3≠1, 解得:m≠−2, 又∵方程的解是正数, ∴m+3>0, 解不等式得:m>−3, 综上可知:m>−3且m≠−2,故C正确. 故选:C. 【点睛】本题主要考查了分式方程的解,解一元一次不等式,掌握分式方程的解,解一元一次不等式,是解题的关键. 9、C 【解析】C 【分析】先求出该外角的内角为50°,再分50°角为底角和顶角两种情况,求出其他两个内角的度数即可. 【详解】解:∵等腰三角形的一个外角等于130°, ∴等腰三角形的内角为180°-130°=50°, 当50°角为底角时,顶角为180°-2×50°=80°, 当50°为顶角时,底角为(180°-50°)÷2=65°, 故等腰三角形的顶角为50°或80°, 故选:C. 【点睛】此题考查了等腰三角形的性质:等腰三角形的两个底角相等. 二、填空题 10、B 【解析】B 【分析】设矩形ABCD的边AB=a,AD=b,根据四个正方形周长之和为24,面积之和为12,得到a+b=3,a2+b2=6,再根据,即可求出答案. 【详解】解:设AB=a,AD=b,由题意得8a+8b=24,2a2+2b2=12, 即a+b=3,a2+b2=6, ∴, 即长方形ABCD的面积为, 故选:B. 【点睛】本题考查完全平方公式的意义和应用,掌握完全平方公式的结构特征是正确应用的前提. 11、2 【分析】根据分式值为零的条件,列式计算即可. 【详解】解:∵分式的值为0, ∴x-2=0,1-x≠0, 解得:x=1、 故答案为:1、 【点睛】本题考查了分式值为零的条件,熟知分式值为零:分子为零分母不为零是解题的关键. 12、0 【分析】根据“关于轴对称的点,横坐标相同,纵坐标互为相反数”求出、的值,然后代入代数式进行计算即可得解. 【详解】解:、关于轴对称, ,, ,, 所以. 故答案为:0. 【点睛】本题考查了关于轴、轴对称的点的坐标,解题的关键是掌握好对称点的坐标规律:(1)关于轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于轴对称的点,纵坐标相同,横坐标互为相反数. 13、② 【分析】先根据分式的基本性质通分,约分对原分式进行化简,然后分析化简后的结果的范围即可得出答案. 【详解】 ∵x为正整数 ∴表示的值的点落在线段②上, 故答案为:②. 【点睛】本题主要考查分式的化简及估算,掌握分式的基本性质是解题的关键. 14、 【分析】由同底数幂的除法,可知,再把,代入,即可求得其值 【详解】解:, ,, . 故答案为:. 【点睛】本题考查了同底数幂的除法运算法则,根据同底数幂的除法运算法则进行恒等变式是解决本题的关键. 15、7 【分析】△APC周长,因为AC=3,所以求出AP+CP的最小值即可求出△APC周长的最小值,根据题意知点关于直线EF的对称点为点B,故当点P与点E重合时,AP+CP的值最小,即可得到结论. 【详 【解析】7 【分析】△APC周长,因为AC=3,所以求出AP+CP的最小值即可求出△APC周长的最小值,根据题意知点关于直线EF的对称点为点B,故当点P与点E重合时,AP+CP的值最小,即可得到结论. 【详解】∵直线EF垂直平分AB, ∴A,B关于直线EF对称, 设直线EF交BC于E, ∴当P和E重合时,AP+CP的值最小,最小值等于BC的长, ∴△APC周长的最小值, 故答案为:6、 【点睛】本题考查了轴对称-最短路线问题的应用、垂直平分线的性质、三角形周长,解答本题的关键是准确找出P的位置. 16、四 【分析】任何多边形的外角和是360度,因而这个多边形的内角和是360度.n边形的内角和是(n−2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数. 【解析】四 【分析】任何多边形的外角和是360度,因而这个多边形的内角和是360度.n边形的内角和是(n−2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数. 【详解】解:任何多边形的外角和是360度, 设该多边形的边数为n,根据题意,得(n−2)•180=360,解得n=4, ∴这个多边形是四边形, 故答案为:四. 【点睛】本题主要考查了多边形的外角和,多边形的外角和等于360度,已知多边形的内角和求边数,可以转化为方程的问题来解决. 17、2 【分析】利用完全平方公式的展开,把xy=3 代入,求出x2+y1、 【详解】解:∵(x+y)2=8, ∴x2+y2+2xy=8, 又∵xy=3, ∴x2+y2=1、 故答案为:1、 【点睛】本 【解析】2 【分析】利用完全平方公式的展开,把xy=3 代入,求出x2+y1、 【详解】解:∵(x+y)2=8, ∴x2+y2+2xy=8, 又∵xy=3, ∴x2+y2=1、 故答案为:1、 【点睛】本题考查完全平方公式的变形,熟练掌握完全平方公式是解题的关键. 18、18或21##21或18 【分析】设BM=3t,则BN=4t,使△ACM与△BMN全等,由∠A=∠B=90°可知,分两种情况: 情况一:当BM=AC,BN=AM时,列方程解得t,可得AC; 情况二: 【解析】18或21##21或18 【分析】设BM=3t,则BN=4t,使△ACM与△BMN全等,由∠A=∠B=90°可知,分两种情况: 情况一:当BM=AC,BN=AM时,列方程解得t,可得AC; 情况二:当BM=AM,BN=AC时,列方程解得t,可得AC. 【详解】解:设BM=3t,则BN=4t,因为∠A=∠B=90°,使△ACM与△BMN全等,可分两种情况: 情况一:当BM=AC,BN=AM时, ∵BN=AM,AB=42, ∴4t=42−3t, 解得:t=6, ∴AC=BM=3t=3×6=18; 情况二:当BM=AM,BN=AC时, ∵BM=AM,AB=42, ∴3t=42−3t, 解得:t=7, ∴AC=BN=3t=3×7=21, 综上所述,AC=18或AC=20、 故答案为:18或20、 【点睛】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键. 三、解答题 19、(1) (2) 【分析】(1)先变形,再提公因式法; (2)先提公因式,再逆用完全平方公式. (1) x(x-y)+ y(y-x) =x(x-y)- y(x- y) =(x-y)(x- y) 【解析】(1) (2) 【分析】(1)先变形,再提公因式法; (2)先提公因式,再逆用完全平方公式. (1) x(x-y)+ y(y-x) =x(x-y)- y(x- y) =(x-y)(x- y) = (x- y)2; (2) 5a2b - 20ab2 + 20b3 = 5b(a2 - 4ab + 4b2) = 5b(a - 2b)1、 【点睛】本题主要考查因式分解,熟练掌握提公因式法、公式法进行因式分解是解决本题的关键. 20、【分析】由分式的加减乘除运算,把分式进行化简,即可得到答案. 【详解】解:原式 ; 【点睛】本题考查了分式的加减乘除混合运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简. 【解析】 【分析】由分式的加减乘除运算,把分式进行化简,即可得到答案. 【详解】解:原式 ; 【点睛】本题考查了分式的加减乘除混合运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简. 21、证明过程见解析 【分析】根据EF∥AB,得到,再根据已知条件证明,即可得解; 【详解】∵EF∥AB, ∴, 在和中, , ∴, ∴; 【点睛】本题主要考查了全等三角形的判定与性质,准确分析判断是解题 【解析】证明过程见解析 【分析】根据EF∥AB,得到,再根据已知条件证明,即可得解; 【详解】∵EF∥AB, ∴, 在和中, , ∴, ∴; 【点睛】本题主要考查了全等三角形的判定与性质,准确分析判断是解题的关键. 22、(1), (2),理由见解析 (3) 【分析】(1)如图1,根据角平分线的定义可得∠OBC=∠ABC,∠OCB=∠ACB,然后表示出∠OBC+∠OCB,再根据三角形的内角和等于180°列式整理即可得 【解析】(1), (2),理由见解析 (3) 【分析】(1)如图1,根据角平分线的定义可得∠OBC=∠ABC,∠OCB=∠ACB,然后表示出∠OBC+∠OCB,再根据三角形的内角和等于180°列式整理即可得∠BOC=90°+α;如图2,根据三角形的内角和等于180°列式整理即可得∠BOC=120°+α; (2)如图3,根据三角形的内角和等于180°列式整理即可得∠BOC=120°﹣α; (3)根据三角形的内角和等于180°列式整理即可得∠BOC=. (1) 如图1,∵∠ABC与∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB),在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB) =180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=90°+α; 如图2,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB) =180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=120°+∠A=120°+α; (2) 如图3,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB) =180°﹣(∠DBC+∠ECB)=180°﹣(∠A+∠ACB+∠A+ABC)=180°﹣(∠A+180°)=120°﹣α; (3) 在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB) =180°﹣(∠DBC+∠ECB)=180°﹣(∠A+∠ACB+∠A+∠ABC) =180°﹣(∠A+180°) =. 【点睛】此题考查了三角形内角和定理,角平分线的性质,解题关键在于掌握内角和定理,以及几何图形中角度的计算. 23、原计划每天修建盲道240米. 【分析】设原计划每天修建盲道米,结合原计划的工作时间比实际的工作时间多3天,再列方程,解方程即可. 【详解】解:设原计划每天修建盲道米,根据题意得: 解这个方程,得: 【解析】原计划每天修建盲道240米. 【分析】设原计划每天修建盲道米,结合原计划的工作时间比实际的工作时间多3天,再列方程,解方程即可. 【详解】解:设原计划每天修建盲道米,根据题意得: 解这个方程,得:, 经检验,为原方程的解. 答:原计划每天修建盲道240米. 【点睛】本题考查的是分式方程的应用,确定相等关系,再利用相等关系列方程是解本题的关键. 24、(1),;(2);(3)①,② 【分析】(1)依据正方形的面积计算公式即可得到结论; (2)依据(1)中的代数式,即可得出(a+b)2,a2+b2,ab之间的等量关系; (3)①依据a+b=5,可得 【解析】(1),;(2);(3)①,② 【分析】(1)依据正方形的面积计算公式即可得到结论; (2)依据(1)中的代数式,即可得出(a+b)2,a2+b2,ab之间的等量关系; (3)①依据a+b=5,可得(a+b)2=25,进而得出a2+b2+2ab=25,再根据a2+b2=17,即可得到ab=4;②设2020-a=x,a-2019=y,即可得到x+y=1,x2+y2=5,依据(x+y)2=x2+2xy+y2,即可得出xy==,进而得到=. 【详解】解:(1)图2大正方形的面积=,图2大正方形的面积= 故答案为:,; (2)由题可得,,之间的等量关系为:故答案为:; (3)① ②设2020-a=x,a-2019=y,则x+y=1, ∵, ∴x2+y2=5, ∵(x+y)2=x2+2xy+y2, ∴xy==-2, 即. 【点睛】本题主要考查了完全平方公式的几何背景,熟练掌握完全平方公式是解本题的关键. 25、(1);(2);(3)0,2、 【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论. (2)根据材料(2)的方法,把代数式变形为,解答即可; (3)先将变形为,由材料(2) 【解析】(1);(2);(3)0,2、 【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论. (2)根据材料(2)的方法,把代数式变形为,解答即可; (3)先将变形为,由材料(2)可知时(即x=0,)有最小值. 【详解】解:(1),所以; 当时,由阅读材料1可得,, 所以; (2) , 所以; (3) ∵x≥0, ∴ 即:当时,有最小值, ∴当x=0时,有最小值为3. 【点睛】本题主要考查了分式的混合运算和配方法的应用.读懂材料并加以运用是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 001 厦门 中学 初中部 数学 年级 上册 期末试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文