人教版数学初二上学期期末试题含答案.doc
《人教版数学初二上学期期末试题含答案.doc》由会员分享,可在线阅读,更多相关《人教版数学初二上学期期末试题含答案.doc(20页珍藏版)》请在咨信网上搜索。
人教版数学初二上学期期末试题含答案 一、选择题 1.我国新能源汽车产业发展取得了明显成效,逐渐进入市场化驱动阶段.下列新能源汽车图标中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D. 2.我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000023米.用科学记数法表示0.000000023为( ) A.23×10﹣10 B.2.3×10﹣10 C.2.3×10﹣9 D.2.3×10﹣8 3.下列计算正确的是( ) A. B. C. D. 4.函数=中自变量的取值范围为( ) A.>0 B.≥0 C.≠0 D.≥0且≠1 5.下列因式分解错误的是( ) A. B. C. D. 6.下列分式变形一定成立的是( ) A. B. C. D. 7.在△ABC和△A'B'C'中,AB=A'B',∠B=∠B',补充条件后仍不一定能保证△ABC≌△A'B'C',则补充的这个条件是( ) A.AC=A'C' B.∠A=∠A' C.BC=B'C' D.∠C=∠C' 8.若关于x的分式方程有增根,则m的值为( ) A.5 B.4 C.3 D.2 9.边长为a和(其中:)的两个正方形按如图的样子摆放,则图中阴影部分的面积为( ) A. B. C. D. 10.如图,在和中,,连接交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为( ). A.4 B.3 C.2 D.1 二、填空题 11.若分式值为,则的值为______. 12.若P()和点Q(2,-6)关于y轴对称,则m=___,n=___. 13.已知,则的值是_____________. 14.求值:______. 15.如图,在中,,,的垂直平分线分别交,于点,,点是上的任意一点,则周长的最小值是________cm. 16.若为完全平方式,则m的值为_____. 17.一个多边形的内角和等于,这是___________边形 18.如图,AB=12cm,∠CAB=∠DBA=62°,AC=BD=9cm.点P在线段AB上以3cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.设点Q的运动速度为xcm/s.当以B、P、Q为顶点的三角形与△ACP全等时,x的值为 __________________. 三、解答题 19.因式分解: (1); (2). 20.解下列分式方程: (1)+=1; (2)﹣1=. 21.如图,AB⊥CB,DC⊥CB,E、F在BC上,∠A=∠D,BE=CF,求证:AF=DE. 22.(1)如图1,∠ADC=120°,∠BCD=140°,∠DAB和∠CBE的平分线交于点,则∠AFB的度数是 ; (2)如图2,若∠ADC=,∠BCD=,且,∠DAB和∠CBE的平分线交于点,则∠AFB= (用含,的代数式表示); (3)如图3,∠ADC=,∠BCD=,当∠DAB和∠CBE的平分线AG,BH平行时,,应该满足怎样的数量关系?请说明理由; (4)如果将(2)中的条件改为,再分别作∠DAB和∠CBE的平分线,∠AFB与,满足怎样的数量关系?请画出图形并直接写出结论. 23.某社区拟建,两类摊位以搞活“地摊经济”,每个类摊位的占地面积比每个类摊位的占地面积多2平方米.用60平方米建类摊位的个数恰好是用同样面积建类摊位个数的? (1)求每个,类摊位占地面积各为多少平方米; (2)该社区拟建,两类摊位共90个,且类摊位的数量不少于类摊位数量的3倍.求最多建多少个类摊位. 24.若一个正整数能表示成(是正整数,且)的形式,则称这个数为“明礼崇德数”,与是的一个平方差分解. 例如:因为,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:(是正整数),所以也是“明礼崇德数”,与是的一个平方差分解. (1)判断:9_______“明礼崇德数”(填“是”或“不是”); (2)已知(是正整数,是常数,且),要使是“明礼崇德数”,试求出符合条件的一个值,并说明理由; (3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若既是“七喜数”,又是“明礼崇德数”,请求出的所有平方差分解. 25.以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、. (1)试判断、的数量关系,并说明理由; (2)延长交于点试求的度数; (3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由. 26.问题引入: (1)如图1,在中,点O是和平分线的交点,若,则______(用表示):如图2,,,,则______(用表示); 拓展研究: (2)如图3,,,,猜想度数(用表示),并说明理由; (3)BO、CO分别是的外角、的n等分线,它们交于点O,,,,请猜想______(直接写出答案). 【参考答案】 一、选择题 2.B 解析:B 【分析】直接利用轴对称图形的性质和中心对称图形的性质分别分析得出答案. 【详解】A.这个选项的图形是轴对称图形,不是中心对称图形,故这个选项不合题意; B.这个选项的图形既是轴对称图形,又是中心对称图形,故这个选项符合题意; C.这个选项的图形既不是轴对称图形,又不是中心对称图形,故这个选项不合题意; D.这个选项的图形既不是轴对称图形,又不是中心对称图形,故这个选项不合题意; 故答案为:B. 【点睛】本题主要考查了轴对称图形和中心对称图形的概念,正确掌握相关定义是解本题的关键. 3.D 解析:D 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000000023=2.3×10﹣8. 故选:D. 【点睛】本题考查用科学记数法表示较小的数,熟练掌握一般形式为a×10−n ,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定是解题的关键. 4.C 解析:C 【分析】根据合并同类项,同底数幂相除,幂的乘方,同底数幂相乘,逐项判断即可求解. 【详解】解:A、和不是同类项,不能合并,故本选项错误,不符合题意; B、,故本选项错误,不符合题意; C、,故本选项正确,符合题意; D、,故本选项错误,不符合题意; 故选:C 【点睛】本题主要考查了合并同类项,同底数幂相除,幂的乘方,同底数幂相乘,熟练掌握相关运算法则是解题的关键. 5.D 解析:D 【分析】根据分式及二次根式有意义的条件进行计算即可. 【详解】解:由题可知,且, ∴且. 故选:D. 【点睛】本题考查了函数自变量取值范围的求解,熟练掌握分式及二次根式有意义的条件是解题的关键. 6.D 解析:D 【分析】根据公式特点判断,然后利用排除法求解. 【详解】解:A.是平方差公式,故A选项正确,不符合题意; B.是完全平方公式,故B选项正确,不符合题意; C.是提公因式法,故C选项正确,不符合题意; D.,故D选项错误,符合题意; 故选:D. 【点睛】本题主要考查了分解因式的方法,熟练掌握因式分解的方法是解题的关键. 7.B 解析:B 【分析】根据分式的基本性质,进行计算即可解答. 【详解】解:A、,故A不符合题意; B、,故B符合题意; C、,故C不符合题意; D、,故D不符合题意; 故选:B 【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键. 8.A 解析:A 【分析】全等三角形的判定可用两边夹一角,两角夹一边,三边相等等进行判定,做题时要按判定全等的方法逐个验证. 【详解】解:A、若添加AC=A'C',不能判定△ABC≌△A'B'C',故本选项正确; B、若添加∠A=∠A',可利用ASA判定△ABC≌△A'B'C',故本选项错误; C、若添加BC=B'C',可利用SAS判定△ABC≌△A'B'C',故本选项错误; D、若添加∠C=∠C',可利用AAS判定△ABC≌△A'B'C',故本选项错误; 故选:A. 【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定,要认真确定各对应关系. 9.A 解析:A 【分析】根据题意可得x=3,然后把x的值代入整式方程中,进行计算即可解答. 【详解】解:, m+4=2(x﹣3)+3x, 解得:x= , ∵分式方程有增根, ∴x=3, 把x=3代入x=中, 3=, 解得:m=5, 故选:A. 【点睛】本题考查了分式方程的增根,根据题意求出x的值后代入整式方程中进行计算是解题的关键. 10.D 解析:D 【分析】图中阴影部分的面积为两个正方形面积的和减去空白三角形的面积即可求解. 【详解】解:根据图形,得图中阴影部分的面积为 大正方形的面积小正方形的面积空白三角形的面积, 即: , 故选:D. 【点睛】本题考查了列代数式,解题的关键是观察图形所给条件并列式. 11.B 解析:B 【分析】根据题意逐个证明即可,①只要证明,即可证明; ②利用三角形的外角性质即可证明; ④作于,于,再证明即可证明平分. 【详解】解:∵, ∴, 即, 在和中,, ∴, ∴,①正确; ∴, 由三角形的外角性质得: ∴°,②正确; 作于,于,如图所示: 则°, 在和中,, ∴, ∴, ∴平分,④正确; 正确的个数有3个; 故选B. 【点睛】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等. 二、填空题 12.2 【分析】根据分式值为零及分式有意义的条件列方程及不等式求解. 【详解】解:由题意可得, 解得:, 故答案为:. 【点睛】本题考查分式值为零的条件,理解当分子为零且分母不等于零时分式的值为零是解题关键. 13. 0 -1 【分析】利用关于y轴对称的点的性质得出关于m,n的方程组,求解即可得出答案. 【详解】解:∵P(,)和点Q(2,﹣6)关于y轴对称, ∴,解得. 故答案为:0,-1. 【点睛】此题主要考查了关于y轴对称的点的性质,正确理解关于坐标轴对称的点的性质是解题的关键. 14.0 【分析】将转化为,再代入所求式子中求解即可. 【详解】解:∵, ∴, ∴, ∴ , 故答案为:0. 【点睛】本题考查分式的求值、分式的加减、等式的性质,熟练掌握分式的加减运算法则,利用整体代入求解是解答的关键. 15. 【分析】对所求的式子进行变形后,逆用积的乘方的法则运算即可. 【详解】解: = = = = = 故答案为:. 【点睛】此题主要考查积的乘方,解题的关键是熟记积的乘方法则并逆用法则. 16.12 【分析】当点于重合时,的周长最小,根据垂直平分线的性质,即可求出的周长. 【详解】∵DE垂直平分AC,∴点C与A关于DE对称, ∴当点于重合时,即A、D、B三点在一条直线上时,BF+CF 解析:12 【分析】当点于重合时,的周长最小,根据垂直平分线的性质,即可求出的周长. 【详解】∵DE垂直平分AC,∴点C与A关于DE对称, ∴当点于重合时,即A、D、B三点在一条直线上时,BF+CF=AB最小,(如图), ∴的周长为:, ∵是垂直平分线, ∴, 又∵, ∴, ∴, 故答案为:12. 【点睛】本题考查最短路径问题以及线段垂直平分线的性质:垂直平分线上的点到线段两端的距离相等,熟练掌握最短路径的求解方法以及垂直平分线的性质是解题的关键. 17.10或-10##-10或10##±10 【分析】根据完全平方公式的形式求解即可.完全平方公式:,. 【详解】∵, ∴或, 解得:m=10或-10. 故答案为:10或-10. 【点睛】此题 解析:10或-10##-10或10##±10 【分析】根据完全平方公式的形式求解即可.完全平方公式:,. 【详解】∵, ∴或, 解得:m=10或-10. 故答案为:10或-10. 【点睛】此题考查了完全平方公式的形式,解题的关键是熟练掌握完全平方公式的形式.完全平方公式:,. 18.4##四 【分析】n边形的内角和是,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数. 【详解】解:由题意可得 =360°, 解得n=4. 则它是4边形. 解析:4##四 【分析】n边形的内角和是,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数. 【详解】解:由题意可得 =360°, 解得n=4. 则它是4边形. 故答案为:4. 【点睛】本题考查了多边形内角和求边数,解决本题的关键是转化为方程的问题. 19.3或 【分析】△ACP与△BPQ全等,则分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可. 【详解】解: ∠CAB=∠DBA=62°, 为对应顶点, ① 解析:3或 【分析】△ACP与△BPQ全等,则分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可. 【详解】解: ∠CAB=∠DBA=62°, 为对应顶点, ①若△ACP≌△BPQ, 则AC=BP,AP=BQ, 解得:; ②若△ACP≌△BQP, 则AC=BQ,AP=BP, , 解得:; 综上所述,当x=3或 时,△ACP与△BPQ全等. 故答案为3或. 【点睛】本题主要考查了全等三角形的判定与性质,解题的关键是注意分类讨论思想的渗透. 三、解答题 20.(1) (2) 【分析】对于(1),根据平方差公式计算即可; 对于(2),先提出公因式a,再根据完全平方公式分解即可. (1) 原式=x2-32 ; (2) 原式 . 【点睛】本 解析:(1) (2) 【分析】对于(1),根据平方差公式计算即可; 对于(2),先提出公因式a,再根据完全平方公式分解即可. (1) 原式=x2-32 ; (2) 原式 . 【点睛】本题主要考查了因式分解,掌握平方差公式和完全平方公式是解题的关键. 21.(1)x=0;(2)无解 【分析】(1)(2)首先将分式方程转化为整式方程,然后解整式方程,注意求出的整式方程的解要进行检验. 【详解】解:(1)∵+=1, ∴﹣=1, 方程两边同时乘(x﹣ 解析:(1)x=0;(2)无解 【分析】(1)(2)首先将分式方程转化为整式方程,然后解整式方程,注意求出的整式方程的解要进行检验. 【详解】解:(1)∵+=1, ∴﹣=1, 方程两边同时乘(x﹣1),可得:1﹣2=x﹣1, 解得:x=0, 经检验:x=0是原分式方程的解, ∴原分式方程的解为:x=0. (2)∵﹣1=, ∴﹣1=, 方程两边同时乘(x+2)(x﹣2),可得:x(x+2)﹣(x+2)(x﹣2)=8, 整理得:2x﹣4=0, 解得x=2, 检验:当x=2时,(x+2)(x﹣2)=0, ∴原分式方程无解. 【点睛】此题主要考查了解分式方程,解答此题的关键是要明确解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论. 22.见解析 【分析】由题意可得∠B=∠C=90°,BF=CE,由“AAS”可证△ABF≌△DCE,可得AF=DE. 【详解】证明:∵AB⊥CB,DC⊥CB, ∴∠B=∠C=90°, ∵BE=CF 解析:见解析 【分析】由题意可得∠B=∠C=90°,BF=CE,由“AAS”可证△ABF≌△DCE,可得AF=DE. 【详解】证明:∵AB⊥CB,DC⊥CB, ∴∠B=∠C=90°, ∵BE=CF, ∴BF=CE,且∠A=∠D,∠B=∠C=90°, ∴△ABF≌△DCE(AAS), ∴AF=DE, 【点睛】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键. 23.(1)40°;(2);(3)若AG∥BH,则α+β=180°,理由见解析;(4),图见解析. 【分析】(1)利用四边形内角和定理得到∠DAB+∠ABC=360°-120°-140°=100°.再利 解析:(1)40°;(2);(3)若AG∥BH,则α+β=180°,理由见解析;(4),图见解析. 【分析】(1)利用四边形内角和定理得到∠DAB+∠ABC=360°-120°-140°=100°.再利用三角形的外角性质得到∠F=∠FBE-∠FAB,通过计算即可求解; (2)同(1),通过计算即可求解; (3)由AG∥BH,推出∠GAB=∠HBE.再推出AD∥BC,再利用平行线的性质即可得到答案; (4)利用四边形内角和定理得到∠DAB+∠ABC=360°-∠D-BCD=360°-α-β.再利用三角形的外角性质得到∠F=∠MAB-∠ABF,通过计算即可求解. 【详解】解:(1)∵BF平分∠CBE,AF平分∠DAB, ∴∠FBE=∠CBE,∠FAB=∠DAB. ∵∠D+∠DCB+∠DAB+∠ABC=360°, ∴∠DAB+∠ABC=360°-∠D-∠DCB =360°-120°-140°=100°. 又∵∠F+∠FAB=∠FBE, ∴∠F=∠FBE-∠FAB=∠CBE−∠DAB = (∠CBE−∠DAB) = (180°−∠ABC−∠DAB) =×(180°−100°) =40°. 故答案为:40°; (2)由(1)得:∠AFB= (180°−∠ABC−∠DAB), ∠DAB+∠ABC=360°-∠D-∠DCB. ∴∠AFB= (180°−360°+∠D+∠DCB) =∠D+∠DCB−90° =α+β−90°. 故答案为:; (3)若AG∥BH,则α+β=180°.理由如下: 若AG∥BH,则∠GAB=∠HBE. ∵AG平分∠DAB,BH平分∠CBE, ∴∠DAB=2∠GAB,∠CBE=2∠HBE, ∴∠DAB=∠CBE, ∴AD∥BC, ∴∠DAB+∠DCB=α+β=180°; (4)如图: ∵AM平分∠DAB,BN平分∠CBE, ∴∠BAM=∠DAB,∠NBE=∠CBE, ∵∠D+∠DAB+∠ABC+∠BCD=360°, ∴∠DAB+∠ABC=360°-∠D-BCD=360°-α-β, ∴∠DAB+180°-∠CBE=360°-α-β, ∴∠DAB-∠CBE=180°-α-β, ∵∠ABF与∠NBE是对顶角, ∴∠ABF=∠NBE, 又∵∠F+∠ABF=∠MAB, ∴∠F=∠MAB-∠ABF, ∴∠F=∠DAB−∠NBE =∠DAB−∠CBE = (∠DAB−∠CBE) = (180°−α−β) =90°-α−β. 【点睛】本题主要考查了三角形的外角性质、四边形内角和定理、平行线的性质、角平分线的定义.借助转化的数学思想,将未知条件转化为已知条件解题. 24.(1)每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方米 (2)最多建22个类摊位 【分析】(1)设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,由题意:用60平方米建类摊位 解析:(1)每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方米 (2)最多建22个类摊位 【分析】(1)设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,由题意:用60平方米建类摊位的个数恰好是用同样面积建类摊位个数的,列出分式方程,然后解方程即可; (2)设类摊位的数量为个,则类摊位的数量为个,由题意:建造类摊位的数量不少于类摊位数量的3倍,列出一元一次不等式,然后解不等式即可. (1)解:设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,依题意,得:,解得:,经检验,是原分式方程的解,且符合题意,则.答:每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方米. (2)设类摊位的数量为个,则类摊位的数量为个,依题意,得:,解得:,因为取整数,所以的最大值为22.答:最多建22个类摊位. 【点睛】本题考查了分式方程的应用以及一元一次不等式的应用.解题的关键是:(1)找准等量关系,正确列出分式方程:(2)找出数量关系,正确列出一元一次不等式. 25.(1)是;(2)k=-5;(3)m=279,,. 【分析】(1)根据9=52-42,确定9是“明礼崇德数”; (2)根据题意分析N应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N 解析:(1)是;(2)k=-5;(3)m=279,,. 【分析】(1)根据9=52-42,确定9是“明礼崇德数”; (2)根据题意分析N应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N平方差分解,得到答案; (3)确定“七喜数”m的值,分别将其平方差分解即可. 【详解】(1)∵9=52-42, ∴9是“明礼崇德数”, 故答案为:是; (2)当k=-5时,是“明礼崇德数”, ∵当k=-5时, , =, =, =, = =. ∵是正整数,且, ∴N是正整数,符合题意, ∴当k=-5时,是“明礼崇德数”; (3)由题意得:“七喜数”m=178或279, 设m==(a+b)(a-b), 当m=178时, ∵178=289, ∴,得(不合题意,舍去); 当m=279时, ∵279=393=931, ∴①,得,∴, ②,得,∴, ∴既是“七喜数”又是“明礼崇德数”的m是279,,. 【点睛】此题考查因式分解,熟练掌握平方差公式和完全平方公式是解此题的前提,(3)是此题的难点,解题时需根据百位与个位数字的关系确定具体的数据,再根据“明礼崇德数”的要求进行平方差分解. 26.(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析. 【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△ 解析:(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析. 【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE; (2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可得到∠BFC=180°-∠ACE-∠CDF=180°-∠DBA-∠BDA=∠DAB=90°; (3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠DAB=90°. 【详解】(1)∵△ABC、△ADE是等腰直角三角形, ∴AB=AC,∠BAD=∠EAC=90°,AD=AE, ∵在△ADB和△AEC中, ∴△ADB≌△AEC(SAS),∴BD=CE; (2)∵△ADB≌△AEC,∴∠ACE=∠ABD, 而在△CDF中,∠BFC=180°-∠ACE-∠CDF, 又∵∠CDF=∠BDA, ∴∠BFC=180°-∠DBA-∠BDA=∠DAB=90°; (3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下: ∵△ABC、△ADE是等腰直角三角形, ∴AB=AC,AD=AE,∠BAC=∠EAD=90°, ∵∠BAC+∠CAD=∠EAD+∠CAD, ∴∠BAD=∠CAE, 在△ADB和△AEC中, , ∴△ADB≌△AEC(SAS), ∴BD=CE,∠ACE=∠DBA, ∴∠BFC=∠DAB=90°. 【点睛】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的方法进行解答. 27.(1), (2),理由见解析 (3) 【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案; (2)根据三角形内角和定理得,而,代入化简即可; (3)由(2)同理可得答案. 解析:(1), (2),理由见解析 (3) 【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案; (2)根据三角形内角和定理得,而,代入化简即可; (3)由(2)同理可得答案. (1) 解:点是和平分线的交点, , , 在中, , , , , 故答案为:; 在中,, , , , , 故答案为:; (2) 解:,理由如下: ,,, , , , , ; (3) 解:在中,, , , , , 故答案为:. 【点睛】本题主要考查了三角形内角和定理,角平分线的定义,解题的关键是采取类比的方法,同时渗透了整体思想.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 数学 初二 学期 期末 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文