初二上册期末数学检测试题含答案.doc
《初二上册期末数学检测试题含答案.doc》由会员分享,可在线阅读,更多相关《初二上册期末数学检测试题含答案.doc(21页珍藏版)》请在咨信网上搜索。
初二上册期末数学检测试题含答案 一、选择题 1.下面图形中,是轴对称图形的是( ) A. B. C. D. 2.芝麻被称为“八谷之冠”,是世界上最古老的油料作物之一,它作为食品和药物,得到广泛的使用.经测算,一粒芝麻的质量约为0.00000201kg,将一粒芝麻的质量用科学记数法表示均为( ) A. B. C. D. 3.下列运算正确的是( ) A. B. C. D. 4.若式子有意义,则的取值范围为( ) A. B. C. D. 5.下列从左到右的变形是因式分解的是( ) A. B. C. D. 6.下列式子中正确的是( ) A. B. C. D. 7.如图,已知,要使,只需增加的一个条件( ) A. B. C. D. 8.若关于x的分式方程的解为正数,则a的取值范围是( ) A.a<6 B.a>﹣6 C.a>﹣6且a≠﹣4 D.a<6且a≠﹣4 9.如图,BD平分∠ABC交AC于点D.若,则∠ADB=( ) A.100° B.105° C.110° D.120° 10.如图,在和中,连接AC,BD交于点M,AC与OD相交于E,BD与OA相较于F,连接OM,则下列结论中:①;②;③;④MO平分,正确的个数有( ) A.4个 B.3个 C.2个 D.1个 二、填空题 11.当x=_________时,分式的值为零. 12.在平面直角坐标系中,作点关于轴的对称点,得到点,再将点向右平移3个单位,得到点,则点的坐标为__________. 13.若,,则(n为非负整数)的值为__________. 14.计算______. 15.若三角形满足一个角是另一个角的3倍,则称这个三角形为“智慧三角形”,其中称为“智慧角”.在有一个角为60°的“智慧三角形”中,“智慧角”是______度. 16.杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律,观察下列各式及其展开式:请你猜想展开式的第三项的系数是______. 17.已知___________. 18.如图,在中,,,,线段,,两点分别在和过点且垂直于的射线上运动,当__________时,和全等. 三、解答题 19.因式分解 (1)x2y-4y (2)2x2-12x+18 20.(1)解方程: (2)先化简:,再从-1,0或1中选一个合适的x的值代入求值. 21.如图,AB=AC,∠BAD=∠CAD,证明:△ABD≌△ACD 22.如图1,在中,P是与的平分线BP和CP的交点,通过分析发现,理由如下: ∵BP和CP分别是和的角平分线, ∴,. ∴. 又∵在中,, ∴. ∴. (1)①如图2中,H是外角与外角的平分线BH和CH的交点,若,则________. ②若,则________(用含n的式子表示).请说明理由. (2)如图3中,在中,P是与的平分线BP和CP的交点,过点P作,交AC于点D.外角的平分线CE与BP的延长线交于点E,则根据探究1的结论,下列角中与相等的角是________;(填选项) A. B. C. 23.某大运会吉祥物专卖店规定:凡一次购买某型号“蓉宝宝”不超过300个,则按标价付款;一次购买超过300个,则每个“蓉宝宝”均享受打八折的优惠价.某校学生会来该店购买该型号“蓉宝宝”,如果给学校八年级学生每人购买1个,那么只能按标价付款,共需付款6875元;如果多购买30个,那么可以享受八折优惠价,共需付款6100元.试问:该型号每个“蓉宝宝”的标价是多少?这个学校八年级学生有多少人? 24.我们知道,任意一个正整数n都可以进行这样的分解:(p,q是正整数,且),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称是n的最佳分解,并规定;,例如12可以分解成,或,因为,所以是12的最佳分解,所以. (1)求; (2)如果一个正整数只有1与m本身两个正因数,则m称为质数.若质数m满足,求m的值; (3)是否存在正整数n满足,若存在,求n的值:若不存在,说明理由. 25.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明. (1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程; (2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明). 26.如图,在等边中,,分别为,边上的点,,. (1)如图1,若点在边上,求证:; (2)如图2,连.若,求证:; (3)如图3,是的中点,点在内,,点,分别在,上,,若,直接写出的度数(用含有的式子表示). 【参考答案】 一、选择题 2.B 解析:B 【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,据此逐项判断即可. 【详解】解:A中图形不是轴对称图形,不符合题意; B中图形是轴对称图形,符合题意; C中图形不是轴对称图形,不符合题意; D中图形不是轴对称图形,不符合题意; 故选:B. 【点睛】本题考查轴对称图形的定义,理解定义,找准对称轴是解答的关键. 3.C 解析:C 【分析】根据2前面有6个0得到指数为-6,表示为科学记数法即可. 【详解】解:0.00000201=2.01×10-6kg, 故选:C. 【点睛】本题考查利用科学记数法把绝对值较小的数表示为a×10-n形式,其中1≤|a|<10,解题的关键是掌握n等于原数第一个非0的数字前面0的个数. 4.B 解析:B 【分析】根据合并同类项法则、幂的乘方、同底数幂的乘法解决此题. 【详解】解:A.x2与x不是同类项,不能合并,故本选项不符合题意; B.,故本选项符合题意; C.,故本选项不合题意; D.x2与x3不是同类项,不能合并,故本选项不符合题意. 故选:B. 【点睛】本题主要考查合并同类项、幂的乘方、同底数幂的乘法,熟练掌握合并同类项法则、幂的乘方、同底数幂的乘法法则是解决本题的关键. 5.A 解析:A 【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案. 【详解】解:由题意得x﹣4>0, 解得x>4, 故选:A. 【点睛】本题考查的是代数式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0解题的关键. 6.A 解析:A 【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案. 【详解】解:A.把一个多项式转化成几个整式积的形式,故此选项符合题意; B.没把一个多项式转化成几个整式积的形式,故此选项不符合题意; C.等号左侧不是多项式,不是因式分解,故此选项不符合题意; D.从左到右的变形是整式的运算,不是因式分解,故此选项不符合题意; 故选:A. 【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解的意义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别. 7.A 解析:A 【分析】根据分式的基本性质即可求出答案. 【详解】解:A.,故选项正确,符合题意; B.,故选项错误,不符合题意; C.,故选项错误,不符合题意; D.,故选项错误,不符合题意. 故选:A. 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 8.C 解析:C 【分析】结合图形,发现BC=CB是公共边,选择SAS判断即可. 【详解】∵AC=DB,BC=CB, ∴选择SAS判断, 故选C. 【点睛】本题考查了三角形全等的判定定理,熟练掌握定理并结合已知选择适当原理是解题的关键. 9.C 解析:C 【分析】解分式方程,用a表示x,再根据关于x的分式方程的解是正数,列不等式组,解出即可. 【详解】解:原分式方程可化为:, 去分母,得x+2﹣2x+4=﹣a, 解得x=a+6, ∵关于x的分式方程的解是正数, ∴, 解得:a>﹣6且a≠﹣4. 故选:C. 【点睛】本题考查了分式方程的解、解一元一次不等式组,熟练掌握解分式方程、一元一次不等式组的步骤,根据关于x的分式方程的解是正数,列不等式组是解题关键,注意分式有意义的条件. 10.A 解析:A 【分析】根据角平分线性质,可得,结合三角形内角和定理与外角定理即可. 【详解】解:∵BD平分∠ABC交AC于点D, ∴, ∵即, 又∵, ∴, ∵, 即, ∴, ∴, ∴. 故选:A. 【点睛】此题主要考查了三角形角平分线,解题关键是熟练运用三角形内角和定理与外角定理. 11.B 解析:B 【分析】由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,①正确; 由全等三角形的性质得出∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,得出∠AMB=∠AOB=30°,②正确; 作OG⊥MC于G,OH⊥MB于H,则∠OGC=∠OHD=90°,由AAS证明△OCG≌△ODH,得出OG=OH,由角平分线的判定方法得出MO平分∠BMC,④正确; 由∠AOB=∠COD,得出当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM,由△AOC≌△BOD得出∠COM=∠BOM,由MO平分∠BMC得出∠CMO=∠BMO,推出△COM≌△BOM,得OB=OC,而OA=OB,所以OA=OC,而OA>OC,故③错误;即可得出结论. 【详解】解:, ∴, 即, 在和中,, , ,,①正确; , 由三角形的外角性质得:, ,②正确; 作于,于,如图所示: 则, 在和中,, , , 平分,④正确; ∵∠AOB=∠COD, ∴当∠DOM=∠AOM时,OM才平分∠BOC, 假设∠DOM=∠AOM, ∵△AOC≌△BOD, ∴∠COM=∠BOM, ∵MO平分∠BMC, ∴∠CMO=∠BMO, 在△COM和△BOM中,, ∴△COM≌△BOM(ASA), ∴OB=OC, ∵OA=OB ∴OA=OC 与OA>OC矛盾, ∴③错误; 正确的个数有3个; 故选择:. 【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键. 二、填空题 12. 【分析】首先根据分式值为零的条件是分子等于零且分母不等于零,得出,进而计算出x的值即可. 【详解】解:∵分式的值为零, ∴, 解得:. 故答案为: 【点睛】本题主要考查了分式值为零的条件,熟练掌握“分式值为零的条件是分子等于零且分母不等于零”是解本题的关键. 13.(-2,1) 【分析】设P点坐标为(x,y),根据关于轴对称的点的坐标特征和平移的方式可得(x+3,-y),从而可求出x和y的值,即得出P点坐标. 【详解】设P点坐标为(x,y), 根据关于轴对称的点的坐标特征可得(x,-y), 再根据点向右平移3个单位,得到点,则(x+3,-y), ∴x+3=1,-y=-1, 解得:x=-2, y=1, ∴点的坐标为(-2,1). 故答案为:(-2,1) 【点睛】本题考查关于坐标轴对称的点的坐标特点,点的平移.熟练掌握轴对称变换和平移的特点是解题关键. 14.-1 【分析】将x变形,得到,将ab=1代入得到x=1,再代入中计算即可. 【详解】解: =1, ∴, 故答案为:-1. 【点睛】本题考查了分式的加减运算,有理数的乘方,解题的关键是化简分式加法,求出x值. 15.125##18 【分析】先把原式变为,再根据积的乘方的逆运算求解即可. 【详解】解: , 故答案为:0.125. 【点睛】本题主要考查了积的乘方的逆运算,熟知积的乘方的逆运算是解题的关键. 16.60或90##90或60 【分析】根据“智慧三角形”及“智慧角”的定义,列方程求解即可. 【详解】解:在有一个角为60°的三角形中, ①当“智慧角”α=60°时,β=20°,另一个角为100 解析:60或90##90或60 【分析】根据“智慧三角形”及“智慧角”的定义,列方程求解即可. 【详解】解:在有一个角为60°的三角形中, ①当“智慧角”α=60°时,β=20°,另一个角为100°; ②当α+β=180°-60°=120°且α=3β时, 则3β+β=120°, 解得β=30°, ∴α=90°, 即“智慧角”是90°, 故答案为:60或90 【点睛】本题主要考查了三角形的内角和定理,掌握“三角形的内角和是180°”和“智慧三角形”、“智慧角”的定义是解决本题的关键. 17.36 【分析】根据杨辉三角形中的规律即可求出的展开式中第三项的系数. 【详解】解:找规律发现的第三项系数为3=1+2; 的第三项系数为6=1+2+3; 的第三项系数为10=1+2+3+4 解析:36 【分析】根据杨辉三角形中的规律即可求出的展开式中第三项的系数. 【详解】解:找规律发现的第三项系数为3=1+2; 的第三项系数为6=1+2+3; 的第三项系数为10=1+2+3+4; 归纳发现的第三项系数为1+2+3+…+(n-2)+(n-1), ∴展开式的第三项的系数是1+2+3+4+5+6+7+8=36. 故答案为:36. 【点睛】此题考查了数字变化规律,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力. 18.20 【分析】利用完全平方公式展开,发现,代入数值计算即可. 【详解】∵, ∴ 故答案为:20. 【点睛】本题主要考查了完全平方公式,熟悉完全平方公式及其一些常见变形是解题的关键. 解析:20 【分析】利用完全平方公式展开,发现,代入数值计算即可. 【详解】∵, ∴ 故答案为:20. 【点睛】本题主要考查了完全平方公式,熟悉完全平方公式及其一些常见变形是解题的关键. 19.5或10 【分析】当AP=5或10时,△ABC和△PQA全等,根据HL定理推出即可. 【详解】解:∵∠C=90°,AO⊥AC, ∴∠C=∠QAP=90°, ①当AP=5=BC时, 在Rt△ 解析:5或10 【分析】当AP=5或10时,△ABC和△PQA全等,根据HL定理推出即可. 【详解】解:∵∠C=90°,AO⊥AC, ∴∠C=∠QAP=90°, ①当AP=5=BC时, 在Rt△ACB和Rt△QAP中 ∵, ∴Rt△ACB≌Rt△QAP(HL), ②当AP=10=AC时, 在Rt△ACB和Rt△PAQ中 , ∴Rt△ACB≌Rt△PAQ(HL), 故答案为:5或10. 【点睛】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL. 三、解答题 20.(1) (2) 【分析】利用提公因式法和公式法进行因式分解即可. (1) 解:原式= (x2-4)y= (2) 解:原式=2(x2-6x+9)= 【点睛】本题主要考查因式分解,熟练地掌 解析:(1) (2) 【分析】利用提公因式法和公式法进行因式分解即可. (1) 解:原式= (x2-4)y= (2) 解:原式=2(x2-6x+9)= 【点睛】本题主要考查因式分解,熟练地掌握提公因式法,公式法,和分组分解法是解题的关键. 21.(1)x=1;(2),当x=0时,原式=1 【分析】(1)先在方程左右两边同乘以(x-2)去分母,化为整式方程再解方程即可. (2)先对括号内的分式进行通分,再合并,然后再乘以后面的倒数,再因式 解析:(1)x=1;(2),当x=0时,原式=1 【分析】(1)先在方程左右两边同乘以(x-2)去分母,化为整式方程再解方程即可. (2)先对括号内的分式进行通分,再合并,然后再乘以后面的倒数,再因式分解,再约分,最后代入使得分式有意义的x值可求出答案. 【详解】解:(1)方程两边乘(x-2)得, 解得x=1, 检验:当x=1时x-2≠0, 所以原分式方程解为x=1; (2)原式= = =, 由分式有意义的条件可知:x不能取±1, 当x=0时, 原式=0+1=1. 【点睛】本题考查分式的化简求值以及分式方程的解法,解题的关键是熟练运用分式方程的解法,分式的加减运算以及乘除运算法则,本题属于基础题型. 22.见解析 【分析】由“”可证△ABD≌△ACD. 【详解】证明:在△ABD和△ACD 中, ∴△ABD≌△ACD(SAS) 【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定定理是 解析:见解析 【分析】由“”可证△ABD≌△ACD. 【详解】证明:在△ABD和△ACD 中, ∴△ABD≌△ACD(SAS) 【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定定理是解题的关键. 23.(1)①;②,理由见解析 (2)B 【分析】(1)①先根据三角形内角和定理得到的值,再根据角平分线得出的值,最后求得; ②借助题中的结论和角平分线的性质得出、,进而在四边形PBHC中得出结论 解析:(1)①;②,理由见解析 (2)B 【分析】(1)①先根据三角形内角和定理得到的值,再根据角平分线得出的值,最后求得; ②借助题中的结论和角平分线的性质得出、,进而在四边形PBHC中得出结论 (2)借助角三角形外角的性质得到,,对等角进行等量代换即可得出结论. (1)①,,,BH和CH是外角与外角的平分线,故,;②若,则.理由:由图1结论可得,,∵H是外角与外角的平分线BH和CH的交点,P是与的平分线BP和CP的交点,∴,同理可得,∴四边形PBHC中, (2)由题意可得,,,CP是的平分线,,,又;故答案为:B. 【点睛】本题考查角平分线的性质、三角形外角的性质、三角形内角和定理,解决本题的关键是正确理解题意,熟练应用各性质定理. 24.该型号每个“蓉宝宝”的标价是25元,这个学校八年级学生有275人 【分析】设这个学校八年级学生有x人,由题意:如果给学校八年级学生每人购买1个,那么只能按标价付款,共需付款6875元;如果多购买3 解析:该型号每个“蓉宝宝”的标价是25元,这个学校八年级学生有275人 【分析】设这个学校八年级学生有x人,由题意:如果给学校八年级学生每人购买1个,那么只能按标价付款,共需付款6875元;如果多购买30个,那么可以享受八折优惠价,共需付款6100元.列出分式方程,解方程,即可解决问题. 【详解】解:设这个学校八年级学生有x人, 由题意得:, 解得:x=275, 经检验,x=275是原方程的解,且符合题意, 则, 答:该型号每个“蓉宝宝”的标价是25元,这个学校八年级学生有275人. 【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 25.(1); (2)5; (3)4,理由见解析. 【分析】(1)读懂F(n)的定义,写出24的最佳分解,即可直接作答; (2)根据F ( m+4) =1可以知道m+4是一个平方数,再利用因式分解 解析:(1); (2)5; (3)4,理由见解析. 【分析】(1)读懂F(n)的定义,写出24的最佳分解,即可直接作答; (2)根据F ( m+4) =1可以知道m+4是一个平方数,再利用因式分解求出m的值; (3)根据,设n=a4a=4a2,n+12=b4b=4b2,由n=4a2=4b2-12得,进而得,从而求得n的值. (1) 解:∵24=124=212=38=46,24-1>12-2>8-3>6-4, ∴; (2) 解:由质数m满足设, ∴m+4=a2, ∴m=, ∵m为质数, ∴a-2=1, ∴a=3, ∴m=a2-4=5, (3) 解:存在n的值,理由如下: 由,设n=a4a=4a2,n+12=b4b=4b2, ∴n=4a2=4b2-12, ∴b2-a2=3, ∴, ∵a,b为正整数, ∴ , 解得, ∴n=4a2=41=4. 【点睛】本题考查因式分解的应用,用读懂新定义,并把问题转化为方程或方程组,再用因式分解法解方程或方程组是解题的关键. 26.(1)过程见解析;(2)MN= NC﹣BM. 【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠B 解析:(1)过程见解析;(2)MN= NC﹣BM. 【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN =60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC. (2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论. 【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE. ∵△BDC为等腰三角形,△ABC为等边三角形, ∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°, 又BD=DC,且∠BDC=120°, ∴∠DBC=∠DCB=30° ∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°, ∴∠MBD=∠ECD=90°, 在△MBD与△ECD中, ∵ , ∴△MBD≌△ECD(SAS), ∴MD=DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°, 即:∠MDN =∠NDE=60°, 在△DMN与△DEN中, ∵ , ∴△DMN≌△DEN(SAS), ∴MN=NE=CE+NC=BM+NC. (2)如图②中,结论:MN=NC﹣BM. 理由:在CA上截取CE=BM. ∵△ABC是正三角形, ∴∠ACB=∠ABC=60°, 又∵BD=CD,∠BDC=120°, ∴∠BCD=∠CBD=30°, ∴∠MBD=∠DCE=90°, 在△BMD和△CED中 ∵ , ∴△BMD≌△CED(SAS), ∴DM= DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°, 即:∠MDN =∠NDE=60°, 在△MDN和△EDN中 ∵ , ∴△MDN≌△EDN(SAS), ∴MN =NE=NC﹣CE=NC﹣BM. 【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 27.(1)见解析 (2)见解析 (3) 【分析】(1)连接DF,根据“有一个角是60°的等腰三角形是等边三角形”可判断△DEF是等边三角形,则DF=EF,又△ABC是等边三角形,根据三角形内角和可 解析:(1)见解析 (2)见解析 (3) 【分析】(1)连接DF,根据“有一个角是60°的等腰三角形是等边三角形”可判断△DEF是等边三角形,则DF=EF,又△ABC是等边三角形,根据三角形内角和可得出,∠AFD=∠FEC,所以△ADF≌△CFE(AAS),则AD=CF; (2)过点F作JKAC交AB于点J,交BC于点K,过点F作PIAB交AC于P,交BC于点I,连接DF,则△BJK和△CPI是等边三角形,△BDE≌△JFD≌KEF,所以DJ=BE=FK,因为ABPI,FKAC,所以四边形AJFP是平行四边形,则AJ=PF,易得△CPI为等边三角形,由∠FCB=30°可得CF平分∠PCI,则FI=FP,所以FP=AJ,FK=BE=DJ,FI=FK,所以AJ=DJ=BE,即AD=AJ+DJ=2BE; (3)延长MO到点G,使OG=OM,连接NG,BG,NM,作∠ACQ=∠ABN,且使CQ=BN,连接MQ,AQ,先得到△BOG≌△COM(SAS),再得到△ACQ≌△ABN(SAS)和△BNG≌△CQM(SAS),所以∠NAM=∠MAQ=∠CAM+∠CAQ=∠CAM+∠BAN,所以∠CAM+∠BAN=30°,则∠CAM=,所以∠BAN=30°-. (1) 证明:如图,连接, ,, ∵是等边三角形, ∴, ∵是等边三角形, ∴, , , , ,, , ; (2) 证明:如图,过点作交于点,交于点,过点作交于,交于点,连接, , , 和是等边三角形, ,, 是等边三角形, 由(1)中结论可知,, , ,, 四边形是平行四边形, , , , 为等边三角形,, , 平分, 是等边三角形, , , ,, ,即; (3) 如图,延长到点,使,连接,,,作,且使,连接,, ,, , ,,, , ,, , , , , 是等边三角形, , , ,, ,,, , ,, ,, , ,, , , , , ,, , , 又, , , . 【点睛】本题属于三角形的综合题,涉及全等三角形的性质与判定,等边三角形的性质与判定,等腰三角形三线合一等知识,类比思想及构造的思想进行分析,仿造(1)中的结论构造出全等三角形是解题关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 上册 期末 数学 检测 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文