人教版七年级数学下册期末压轴题试题(带答案)培优试卷.doc
《人教版七年级数学下册期末压轴题试题(带答案)培优试卷.doc》由会员分享,可在线阅读,更多相关《人教版七年级数学下册期末压轴题试题(带答案)培优试卷.doc(46页珍藏版)》请在咨信网上搜索。
1、一、解答题1如图1,已知,点A(1,a),AHx轴,垂足为H,将线段AO平移至线段BC,点B(b,0),其中点A与点B对应,点O与点C对应,a、b满足(1)填空:直接写出A、B、C三点的坐标A(_)、B(_)、C(_);直接写出三角形AOH的面积_(2)如图1,若点D(m,n)在线段OA上,证明:4mn(3)如图2,连OC,动点P从点B开始在x轴上以每秒2个单位的速度向左运动,同时点Q从点O开始在y轴上以每秒1个单位的速度向下运动若经过t秒,三角形AOP与三角形COQ的面积相等,试求t的值及点P的坐标2如图1,/,点、分别在、上,点在直线、之间,且(1)求的值;(2)如图2,直线分别交、的角平
2、分线于点、,直接写出的值;(3)如图3,在内,;在内,直线分别交、分别于点、,且,直接写出的值3已知,如图:射线分别与直线、相交于、两点,的角平分线与直线相交于点,射线交于点,设,且(1)_,_;直线与的位置关系是_;(2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论(3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由4如图,直线与、分别交于点、,点在直线上,过点作,垂足为点(1)如图1,求证:;(2)若点在线段上(不与、重合),连接,和
3、的平分线交于点请在图2中补全图形,猜想并证明与的数量关系; 5已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设PFM,EMF,且(402)2|20|0(1),;直线AB与CD的位置关系是 ;(2)如图2,若点G、H分别在射线MA和线段MF上,且MGHPNF,试找出FMN与GHF之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理
4、由6已知,ABDE,点C在AB上方,连接BC、CD(1)如图1,求证:BCDCDEABC;(2)如图2,过点C作CFBC交ED的延长线于点F,探究ABC和F之间的数量关系;(3)如图3,在(2)的条件下,CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分ABC,求BGDCGF的值7规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(3,27)=_,(5,1)=_,(2, )=_(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4
5、n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4)请你尝试运用上述这种方法说明下面这个等式成立的理由:(4,5)+(4,6)=(4,30)8阅读下列解题过程:为了求的值,可设,则,所以得,所以;仿照以上方法计算:(1) .(2)计算:(3)计算:9对于有理数、,定义了一种新运算“”为:如:,(1)计算:_;_;(2)若是关于的一元一次方程,且方程的解为,求的值;(3)若,且,求的值10阅读下面文字:对于可以如下计算:原式上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)(2)11据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志
6、上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由,因为,请确定是_位数;(2)由32768的个位上的数是8,请确定的个位上的数是_,划去32768后面的三位数768得到32,因为,请确定的十位上的数是_(3)已知13824和分别是两个数的立方,仿照上面的计算过程,请计算:=_;12先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中这26个字母依
7、次对应这26个自然数(见下表)QWERTYUIOPASD12345678910111213FGHJKLZXCVBNM14151617181920212223242526给出一个变换公式:将明文转成密文,如,即变为:,即A变为S将密文转成成明文,如,即变为:,即D变为F(1)按上述方法将明文译为密文(2)若按上方法将明文译成的密文为,请找出它的明文13如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,点C的坐标为(3,2)(1)直接写出点E的坐标 ;(2)在四边形ABCD中,点P从点O出发,沿OBBCCD移动,若点P的速度为每秒1个单位长度,运动时
8、间为t秒,请解决以下问题;当t为多少秒时,点P的横坐标与纵坐标互为相反数;当t为多少秒时,三角形PEA的面积为2,求此时P的坐标14已知点C在射线OA上(1)如图,CDOE,若AOB90,OCD120,求BOE的度数;(2)在中,将射线OE沿射线OB平移得OE(如图),若AOB,探究OCD与BOE的关系(用含的代数式表示)(3)在中,过点O作OB的垂线,与OCD的平分线交于点P(如图),若CPO90,探究AOB与BOE的关系15在平面直角坐标系中,已知长方形,点,.(1)如图,有一动点在第二象限的角平分线上,若,求的度数;(2)若把长方形向上平移,得到长方形.在运动过程中,求的面积与的面积之间
9、的数量关系;若,求的面积与的面积之比. 16我们定义,关于同一个未知数的不等式和,若的解都是的解,则称与存在“雅含”关系,且不等式称为不等式的“子式”如,满足的解都是的解,所以与存在“雅含”关系,是的“子式”(1)若关于的不等式,请问与是否存在“雅含”关系,若存在,请说明谁是谁的“子式”;(2)已知关于的不等式,若与存在“雅含”关系,且是的“子式”,求的取值范围;(3)已知,且为整数,关于的不等式,请分析是否存在,使得与存在“雅含”关系,且是的“子式”,若存在,请求出的值,若不存在,请说明理由17在平面直角坐标系中,满足(1)直接写出、的值: ; ;(2)如图1,若点满足的面积等于6,求的值;
10、(3)设线段交轴于C,动点E从点C出发,在轴上以每秒1个单位长度的速度向下运动,动点F从点出发,在轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为秒,问为何值时,有?请求出的值18如图所示,在直角坐标系中,已知,将线段平移至,连接、,且,点在轴上移动(不与点、重合)(1)直接写出点的坐标;(2)点在运动过程中,是否存在的面积是的面积的3倍,如果存在请求出点的坐标,如果不存在请说明理由;(3)点在运动过程中,请写出、三者之间存在怎样的数量关系,并说明理由19历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示例如f(x)x23x5,把x某数时多项式的值用f(某数)来表示例
11、如x1时多项式x23x5的值记为f(1)(1)23(1)57.(1)已知g(x)2x23x1,分别求出g(1)和g(2);(2)已知h(x)ax32x2ax6,当h()a,求a的值;(3)已知f(x)2(a,b为常数),当k无论为何值,总有f(1)0,求a,b的值20阅读下列材料,解答下面的问题:我们知道方程有无数个解,但在实际生活中我们往往只需求出其正整数解例:由,得:,(x、y为正整数),则有又为正整数,则为正整数由2与3互质,可知:x为3的倍数,从而x=3,代入2x+3y=12的正整数解为问题:(1)请你写出方程的一组正整数解:.(2)若为自然数,则满足条件的x值为.(3)七年级某班为了
12、奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?21已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元次,B型车每辆需租金240元次,请选出最省钱的租车方案,并求出最少租车费22每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买
13、10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)ab产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元(1) 求a、b的值;(2) 若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3) 在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一 种最省钱的购买方案23在平面直角坐标系中,点、在坐标轴上,其中、满足(1)求、两点的坐标;(2)将线段平移到,点的对应点为,如图1所示,若三角形的面积为,求点的坐标;(3)平移
14、线段到,若点、也在坐标轴上,如图2所示为线段上的一动点(不与、重合),连接、平分,求证:24如图,在平面直角坐标系中,点为坐标原点,点的坐标为,点的坐标为,其中是二元一次方程组的解,过点作轴的平行线交轴于点(1)求点的坐标;(2)动点从点出发,以每秒个单位长度的速度沿射线的方向运动,连接,设点的运动时间为秒,三角形的面积为,请用含的式子表示(不用写出相应的的取值范围);(3)在(2)的条件下,在动点从点出发的同时,动点从点出发以每秒个单位长度的速度沿线段的方向运动过点作直线的垂线,点为垂足;过点作直线的垂线,点为垂足当时,求的值25某治污公司决定购买10台污水处理设备现有甲、乙两种型号的设备可
15、供选择,其中每台的价格与月处理污水量如下表:甲型乙型价格(万元/台)xy处理污水量(吨/月)300260经调查:购买一台甲型设备比购买一台乙型设备多2万元,购买3台甲型设备比购买4台乙型设备少2万元(1)求x,y的值;(2)如果治污公司购买污水处理设备的资金不超过91万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2750吨,为了节约资金,请为该公司设计一种最省钱的购买方案26某市出租车的起步价是7元(起步价是指不超过行程的出租车价格),超过3km行程后,其中除的行程按起步价计费外,超过部分按每千米1.6元计费(不足按计算)如果仅去程乘出租车而回程时不乘坐此车
16、,并且去程超过,那么顾客还需付回程的空驶费,超过部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费)如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费现设小文等4人从市中心A处到相距()的B处办事,在B处停留的时间在3分钟以内,然后返回A处现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元);方案二:4人乘同一辆出租车往返问选择哪种计费方式更省钱?(写出过程)27阅读理解:例1解方程|x|2,因为在数轴上到原点的距离为2的点对应的数为2,所以方程|x|2的解为x2例2解不等式|x1|2,在数轴上找出|x1|
17、2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为1或3,所以方程|x1|2的解为x1或x3,因此不等式|x1|2的解集为x1或x3参考阅读材料,解答下列问题:(1)方程|x2|3的解为 ;(2)解不等式:|x2|1(3)解不等式:|x4|+|x+2|8(4)对于任意数x,若不等式|x+2|+|x4|a恒成立,求a的取值范围28在平面直角坐标系中,点,且,满足(1)请用含的式子分别表示,两点的坐标;(2)当实数变化时,判断的面积是否发生变化?若不变,求其值;若变化,求其变化范围;(3)如图,已知线段与轴相交于点,直线与直线交于点,若,求实数的取值范围29(发现问题)已知,求的值
18、方法一:先解方程组,得出,的值,再代入,求出的值方法二:将,求出的值(提出问题)怎样才能得到方法二呢?(分析问题)为了得到方法二,可以将,可得令等式左边,比较系数可得,求得(解决问题)(1)请你选择一种方法,求的值;(2)对于方程组利用方法二的思路,求的值;(迁移应用)(3)已知,求的范围30如图,在平面直角坐标系中,点的坐标分别为(1,0)、(-2,0),现同时将点分别向上平移2个单位,再向左平移1个单位,分别得到点的对应点,连接、.(1)若在轴上存在点,连接,使SABM =SABDC,求出点的坐标;(2)若点在线段上运动,连接,求S=SPCD+SPOB的取值范围;(3)若在直线上运动,请直
19、接写出的数量关系.【参考答案】*试卷处理标记,请不要删除一、解答题1(1)1,4;3,0;2,4;2;(2)见解析;(3)t1.2时,P(0.6,0),t2时,P(1,0)【分析】(1)利用非负数的性质求出a,b的值,可得结论利用三角形面积公式求解即可(2)连接DH,根据ODH的面积+ADH的面积=OAH的面积,构建关系式,可得结论(3)分两种情形:当点P在线段OB上,当点P在BO的延长线上时,分别利用面积关系,构建方程,可得结论【详解】(1)解:,又0,(b3)20,a4,b3,A(1,4),B(3,0),B是由A平移得到的,A向右平移2个单位,向下平移4个单位得到B,点C是由点O向右平移2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 下册 期末 压轴 试题 答案 试卷
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。