广州二中应元学校八年级上册压轴题数学模拟试卷及答案.doc
《广州二中应元学校八年级上册压轴题数学模拟试卷及答案.doc》由会员分享,可在线阅读,更多相关《广州二中应元学校八年级上册压轴题数学模拟试卷及答案.doc(39页珍藏版)》请在咨信网上搜索。
1、广州二中应元学校八年级上册压轴题数学模拟试卷及答案一、压轴题1探索发现:根据你发现的规律,回答下列问题:(1) , ;(2)利用你发现的规律计算:(3)利用规律解方程:2在经典几何图形的研究与变式一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线,上,且每两条平行线之间的距离为1,求AB的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B、C向作垂线,就能利用全等三角形的知识求出AB的长.(2)小林说:“我们可以改变的形状.如图2,且每两条平行线之间的距离为1,求AB的长.”(3)小谢说:“我们除了改变的形状,还能改
2、变平行线之间的距离.如图3,等边三角形ABC三个顶点分别落在三条平行线,上,且与之间的距离为1,与之间的距离为2,求AB的长、”请你根据3位同学的提示,分别求出三种情况下AB的长度. 3已知在ABC中,ABAC,射线BM、BN在ABC内部,分别交线段AC于点G、H(1)如图1,若ABC60,MBN30,作AEBN于点D,分别交BC、BM于点E、F求证:12;如图2,若BF2AF,连接CF,求证:BFCF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若BFEBAC2CFE,求的值4(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的
3、底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形如图1,在“手拉手”图形中,小明发现若BAC=DAE,AB=AC,AD=AE,则ABDACE(材料理解)(1)在图1中证明小明的发现(深入探究)(2)如图2,ABC和AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:BD=EC;BOC=60;AOE=60;EO=CO,其中正确的有(将所有正确的序号填在横线上)(延伸应用)(3)如图3,AB=BC,ABC=BDC=60,试探究A与C的数量关系5(1)填空把一张长方形的纸片按如图所示的方式折叠,为折痕,折叠后的点落在或的延长线上,那么的度数是_;把一张长
4、方形的纸片按如图所示的方式折叠,点与点重合,为折痕,折叠后的点落在或的延长线上,那么的度数是_(2)解答:把一张长方形的纸片按如图所示的方式折叠,为折痕,折叠后的点落在或的延长线上左侧,且,求的度数;把一张长方形的纸片按如图所示的方式折叠,点与点重合,为折痕,折叠后的点落在或的延长线右侧,且,求的度数(3)探究:把一张四边形的纸片按如图所示的方式折叠,为折痕,设,求,之间的数量关系6在等腰中,,为边上的高,点在的外部且,,连接交直线于点,连接(1)如图,当时,求证:;(2)如图,当时,求的度数;(3)如图,当时,求证:7(1)问题发现:如图1,ACB和DCE均为等边三角形,点A、D、E在同一直
5、线上,连接BE请直接写出AEB的度数为_;试猜想线段AD与线段BE有怎样的数量关系,并证明;(2)拓展探究:图2, ACB和DCE均为等腰三角形,ACBDCE90,点A、D、E在同直线上, CM为DCE中DE边上的高,连接BE,请判断AEB的度数线段CM、AE、BE之间的数量关系,并说明理由8已知ABC,P 是平面内任意一点(A、B、C、P 中任意三点都不在同一直线上)连接 PB、PC,设PBAs,PCAt,BPCx,BACy(1)如图,当点 P 在ABC 内时,若 y70,s10,t20,则 x ;探究 s、t、x、y 之间的数量关系,并证明你得到的结论(2)当点 P 在ABC 外时,直接写
6、出 s、t、x、y 之间所有可能的数量关系,并画出相应的图形9某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究(1)如图1,在ABC中,ABC与ACB的平分线交于点P,A64,则BPC ;(2)如图2,ABC的内角ACB的平分线与ABC的外角ABD的平分线交于点E其中A,求BEC(用表示BEC);(3)如图3,CBM、BCN为ABC的外角,CBM、BCN的平分线交于点Q,请你写出BQC与A的数量关系,并证明10问题背景:(1)如图1,已知ABC中,BAC90,ABAC,直线m经过点A,BD直线m,CE直线m,垂足分别为点D、E求证:DEBDCE拓展延伸:
7、(2)如图2,将(1)中的条件改为:在ABC中,ABAC,D、A、E三点都在直线m上,并且有BDAAECBAC请写出DE、BD、CE三条线段的数量关系(不需要证明)实际应用:(3)如图,在ACB中,ACB90,ACBC,点C的坐标为(2,0),点A的坐标为(6,3),请直接写出B点的坐标11如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为轴和轴建立平面直角坐标系,点A(0,a),C(b,0)满足(1)a= ;b= ;直角三角形AOC的面积为 (2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发以每秒1个单位长度的速度向
8、点A匀速移动,点P到达O点整个运动随之结束AC的中点D的坐标是(4,3),设运动时间为t秒问:是否存在这样的t,使得ODP与ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由(3)在(2)的条件下,若DOC=DCO,点G是第二象限中一点,并且y轴平分GOD点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究GOD,OHC,ACE之间的数量关系,并证明你的结论(三角形的内角和为180)12数学活动课上,老师出了这样一个题目:“已知:于,点、分别在和上,作线段和(如图1),使求证:”(1)聪聪同学给出一种证明问题的辅助线:如图2,过作,交于请你根据聪聪同学
9、提供的辅助线(或自己添加其它辅助线),给出问题的证明(2)若点在直线下方,且知,直接写出和之间的数量关系13在ABC中,已知A(1)如图1,ABC、ACB的平分线相交于点D求BDC的大小(用含的代数式表示);(2)如图2,若ABC的平分线与ACE的平分线交于点F,求BFC的大小(用含的代数式表示);(3)在(2)的条件下,将FBC以直线BC为对称轴翻折得到GBC,GBC的平分线与GCB的平分线交于点M(如图3),求BMC的度数(用含的代数式表示)14(1)发现:如图1,的内角的平分线和外角的平分线相交于点。当时,则 当时,求的度数(用含的代数式表示)(2)应用:如图2,直线与直线垂直相交于点,
10、点在射线上运动(点不与点重合),点在射线上运动(点不与点重合),延长至,已知的角平分线与的角平分线所在的直线相交于,在中,如果一个角是另一个角的倍,请直接写出的度数.15阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题请看这个例题:如图1,在四边形ABCD中,BAD=BCD=90,AB=AD,若AC=2cm,求四边形ABCD的面积解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明BAEDAC,根据全等三角形的性质得AE=AC=2, EAB=CAD,则EAC=EAB+BAC=DAC+BAC=BAD=90,得S四边形ABCD=SABC+SADC=SABC+
11、SABE=SAEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2(2)请你用上面学到的方法完成下面的习题 如图2,已知FG=FN=HM=GH+MN=2cm,G=N=90,求五边形FGHMN的面积16(1)如图1,和都是等边三角形,且,三点在一条直线上,连接,相交于点,求证:(2)如图2,在中,若,分别以,和为边在外部作等边,等边,等边,连接、恰交于点求证:; 如图2,在(2)的条件下,试猜想,与存在怎样的数量关系,并说明理由17直线与相互垂直,垂足为点,点在射线上运动,点在射线上运动,点、点均不与点重合(1)如图1,
12、平分,平分,若,求的度数;(2)如图2,平分,平分,的反向延长线交于点若,则_度(直接写出结果,不需说理);点、在运动的过程中,是否发生变化,若不变,试求的度数:若变化,请说明变化规律(3)如图3,已知点在的延长线上,的角平分线、的角平分线与的角平分线所在的直线分别相交于的点、,在中,如果有一个角的度数是另一个角的4倍,请直接写出的度数18(1)在等边三角形ABC中,如图,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则BFE的度数是 度;如图,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时BFE的度数是 度;(2)如图,在ABC中,AC=
13、BC,ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若ACB=,求BFE的大小(用含的代数式表示)19(1)探索发现:如图1,已知RtABC中,ACB90,ACBC,直线l过点C,过点A作ADl,过点B作BEl,垂足分别为D、E求证:ADCE,CDBE(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标(3)拓展应用:如图3,在平面直角坐标系内,已知直线y3x+3与y轴交于点P,与x轴
14、交于点Q,将直线PQ绕P点沿逆时针方向旋转45后,所得的直线交x轴于点R求点R的坐标20RtABC中,C=90,点D、E分别是ABC边AC、BC上的点,点P是一动点令PDA=1,PEB=2,DPE=(1)若点P在线段AB上,如图(1)所示,且=60,则1+2= ;(2)若点P在线段AB上运动,如图(2)所示,则、1、2之间的关系为 ;(3)若点P运动到边AB的延长线上,如图(3)所示,则、1、2之间有何关系?猜想并说明理由;(4)若点P运动到ABC形外,如图(4)所示,则、1、2之间有何关系?猜想并说明理由 【参考答案】*试卷处理标记,请不要删除一、压轴题1(1);(2);(3)见解析【解析】
15、【分析】(1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到和(2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.(3)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可.【详解】解:(1), ;故答案为(2)原式 ;(3)已知等式整理得: 所以,原方程即: ,方程的两边同乘x(x+5),得:x+5x2x1,解得:x3,检验:把x3代入x(x+5)240,原方程的解为:x3【点睛】本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点.2(1);(2);(3)【解析】【分析】(1)分
16、别过点B,C向l1作垂线,交l1于M,N两点,证明ABMCAN,得到AM=CN,AN=BM,即可得出AB;(2)分别过点B,C向l1作垂线,交l1于点P,Q两点,在l1上取M,N使AMB=CNA=120,证明AMBCAN,得到CN=AM,再通过PBM和QCN算出PM和NQ的值,得到AP,最后在APB中,利用勾股定理算出AB的长;(3)在l3上找M和N,使得BNC=AMC=60,过B作l3的垂线,交l3于点P,过A作l3的垂线,交l3于点Q,证明BCNCAM,得到CN=AM,在BPN和AQM中利用勾股定理算出NP和AM,从而得到PC,结合BP算出BC的长,即为AB.【详解】解:(1)如图,分别过
17、点B,C向l1作垂线,交l1于M,N两点,由题意可得:BAC=90,NAC+MAB=90,NAC+NCA=90,MAB=NCA,在ABM和CAN中,ABMCAN(AAS),AM=CN=2,AN=BM=1,AB=;(2)分别过点B,C向l1作垂线,交l1于P,Q两点,在l1上取M,N使AMB=CNA=120,BAC=120,MAB+NAC=60,ABM+MAB=60,ABM=NAC,在AMB和CNA中,AMBCNA(AAS),CN=AM,AMB=ANC=120,PMB=QNC=60,PM=BM,NQ=NC,PB=1,CQ=2,设PM=a,NQ=b,解得:,CN=AM=,AB=;(3)如图,在l3
18、上找M和N,使得BNC=AMC=60,过B作l3的垂线,交于点P,过A作l3的垂线,交于点Q,ABC是等边三角形,BC=AC,ACB=60,BCN+ACM=120,BCN+NBC=120,NBC=ACM,在BCN和CAM中,BCNCAM(AAS),CN=AM,BN=CM,PBN=90-60=30,BP=2,BN=2NP,在BPN中,即,解得:NP=,AMC=60,AQ=3,MAQ=30,AM=2QM,在AQM中,即,解得:QM=,AM=CN,PC=CN-NP=AM-NP=,在BPC中,BP2+CP2=BC2,即BC=,AB=BC=.【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等
19、腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.3(1)见解析;见解析;(2)2【解析】【分析】(1)只要证明2+BAF1+BAF60即可解决问题;只要证明BFCADB,即可推出BFCADB90;(2)在BF上截取BKAF,连接AK只要证明ABKCAF,可得SABKSAFC,再证明AFFKBK,可得SABKSAFK,即可解决问题;【详解】(1)证明:如图1中,ABAC,ABC60ABC是等边三角形,BAC60,ADBN,ADB90,MBN30,BFD601+BAF2+BAF,12证明:如图2中,在RtBFD中,FBD3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广州 二中应元 学校 年级 上册 压轴 数学模拟 试卷 答案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。