人教版七年级数学下册期末压轴题试题(带答案)-解析.doc
《人教版七年级数学下册期末压轴题试题(带答案)-解析.doc》由会员分享,可在线阅读,更多相关《人教版七年级数学下册期末压轴题试题(带答案)-解析.doc(44页珍藏版)》请在咨信网上搜索。
1、一、解答题1问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1x2,则ABy轴,且线段AB的长度为|y1y2|;若y1y2,则ABx轴,且线段AB的长度为|x1x2|;(应用):(1)若点A(1,1)、B(2,1),则ABx轴,AB的长度为 (2)若点C(1,0),且CDy轴,且CD2,则点D的坐标为 (拓展):我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)|x1x2|+|y1y2|;例如:图1中,点M(1,1)与点N(1,2)之间的折线距离为d(M,N)|11|+|1(2)|
2、2+35解决下列问题:(1)如图1,已知E(2,0),若F(1,2),则d(E,F) ;(2)如图2,已知E(2,0),H(1,t),若d(E,H)3,则t (3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q) 2如图,已知直线射线CD,P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP作,交直线AB于点F,CG平分(1)若点P,F,G都在点E的右侧,求的度数;(2)若点P,F,G都在点E的右侧,求的度数;(3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由3如图,已知,是的平分线(1)若平分,求的度数;(2
3、)若在的内部,且于,求证:平分;(3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围4点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD(1)如图1,若点E在线段AC上,求证:B+D=BED;(2)若点E不在线段AC上,试猜想并证明B,D,BED之间的等量关系;(3)在(1)的条件下,如图2所示,过点B作PB/ED,在直线BP,ED之间有点M,使得ABE=EBM,CDE=EDM,同时点F使得ABE=nEBF,CDE=nEDF,其中n1,设BMD=m,利用(1)中的结论求BFD的度数
4、(用含m,n的代数式表示)5已知:直线ABCD,直线MN分别交AB、CD于点E、F,作射线EG平分BEF交CD于G,过点F作FHMN交EG于H(1)当点H在线段EG上时,如图1当BEG时,则HFG 猜想并证明:BEG与HFG之间的数量关系(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:BEG与HFG之间的数量关系6如图1,已知直线mn,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即OPA=QPB(1)如图1,若OPQ=
5、82,求OPA的度数;(2)如图2,若AOP=43,BQP=49,求OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 OPQROP试判断OPQ和ORQ的数量关系,并说明理由7a是不为1的有理数,我们把称为a的差倒数如:2的差倒数是,现已知a1=,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数, (1)求a2,a3,a4的值;(2)根据(1)的计算结果,请猜想并写出a2016a2017a2018的值;(3)计算:a33+a66+a99+a9999的值8阅读下面的文字
6、,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而2于是可用来表示的小数部分.请解答下列问题:(1)的整数部分是_,小数部分是_;(2)如果的小数部分为的整数部分为求的值;(3)已知:其中是整数,且求的平方根9阅读材料:求的值解:设,将等式的两边同乘以2,得,用得,即即请仿照此法计算:(1)请直接填写的值为_;(2)求值;(3)请直接写出的值10请观察下列等式,找出规律并回答以下问题,(1)按照这个规律写下去,第5个等式是:_;第n个等式是:_(2)计算:若a为最小的正整数,求:11规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2
7、22,(3)(3)(3)(3)等,类比有理数的乘方,我们把222记作2,读作“2的圈 3 次方,”(3)(3)(3)(3)记作(3),读作:“(3)的圈 4 次方”一般地,把个记作 a,读作 “a 的圈 n次方”(初步探究)(1)直接写出计算结果:2,()(深入思考)2 我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式5;()(3)猜想:有理数 a(a0)的圈n(n3)次方写成幂的形式等于多少(4)应用:求(-3)8(-3)-()9()12阅读材料:求的值解:设,将等式的
8、两边同乘以2,得,用得,即即请仿照此法计算:(1)请直接填写的值为_;(2)求值;(3)请直接写出的值13如图,在平面直角坐标系中,已知,满足平移线段得到线段,使点与点对应,点与点对应,连接,(1)求,的值,并直接写出点的坐标;(2)点在射线(不与点,重合)上,连接,若三角形的面积是三角形的面积的2倍,求点的坐标;设,求,满足的关系式14已知点C在射线OA上(1)如图,CDOE,若AOB90,OCD120,求BOE的度数;(2)在中,将射线OE沿射线OB平移得OE(如图),若AOB,探究OCD与BOE的关系(用含的代数式表示)(3)在中,过点O作OB的垂线,与OCD的平分线交于点P(如图),若
9、CPO90,探究AOB与BOE的关系15如图,在平面直角坐标系中,已知,将线段平移至,点在轴正半轴上,且连接,(1)写出点的坐标为 ;点的坐标为 ;(2)当的面积是的面积的3倍时,求点的坐标;(3)设,判断、之间的数量关系,并说明理由16我们定义,关于同一个未知数的不等式和,若的解都是的解,则称与存在“雅含”关系,且不等式称为不等式的“子式”如,满足的解都是的解,所以与存在“雅含”关系,是的“子式”(1)若关于的不等式,请问与是否存在“雅含”关系,若存在,请说明谁是谁的“子式”;(2)已知关于的不等式,若与存在“雅含”关系,且是的“子式”,求的取值范围;(3)已知,且为整数,关于的不等式,请分
10、析是否存在,使得与存在“雅含”关系,且是的“子式”,若存在,请求出的值,若不存在,请说明理由17如图,在平面直角坐标系中,O为坐标原点,点,其中满足,D为直线AB与轴的交点,C为线段AB上一点,其纵坐标为.(1)求的值;(2)当为何值时,和面积的相等;(3)若点C坐标为(-2,1),点M(m,-3)在第三象限内,满足,求m的取值范围.(注:表示的面积)18在平面直角坐标系中,点,的坐标分别为,现将线段先向上平移3个单位,再向右平移1个单位,得到线段,连接,(1)如图1,求点,的坐标及四边形的面积; 图1(2)如图1,在轴上是否存在点,连接,使?若存在这样的点,求出点的坐标;若不存在,试说明理由
11、;(3)如图2,在直线上是否存在点,连接,使?若存在这样的点,直接写出点的坐标;若不存在,试说明理由 图2(4)在坐标平面内是否存在点,使?若存在这样的点,直接写出点的坐标的规律;若不存在,请说明理由19历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示例如f(x)x23x5,把x某数时多项式的值用f(某数)来表示例如x1时多项式x23x5的值记为f(1)(1)23(1)57.(1)已知g(x)2x23x1,分别求出g(1)和g(2);(2)已知h(x)ax32x2ax6,当h()a,求a的值;(3)已知f(x)2(a,b为常数),当k无论为何值,总有f(1)0,求a,b的值20每年
12、的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)ab产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元(1) 求a、b的值;(2) 若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3) 在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一 种最省钱的购买方案21如图,已知和的度数满足方程组,且.(1)分别求和的度数;(2)请判断与的位置关系,并说明理由;(3)
13、求的度数22如图,在平面直角坐标系中,点A在x轴上,直线OC上所有的点坐标,都是二元一次方程的解,直线AC上所有的点坐标,都是二元一次方程的解,过C作x轴的平行线,交y轴与点B(1)求点A、B、C的坐标;(2)如图,点M、N分别为线段BC,OA上的两个动点,点M从点C以每秒1个单位长度的速度向左运动,同时点N从点O以每秒15个单位长度的速度向右运动,设运动时间为t秒,且0t4,试比较四边形MNAC的面积与四边形MNOB的面积的大小23在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|ab2|0,现同时将点A,B分别向右平移1个单位,再向上平移2个单位,分别得到点
14、A,B的对应点为C,D(1)请直接写出A、B、C、D四点的坐标(2)点E在坐标轴上,且SBCES四边形ABDC,求满足条件的点E的坐标(3)点P是线段BD上的一个动点,连接PC,PO,当点P在线段BD上移动时(不与B,D重合)求:的值24在平面直角坐标系中,点,点,点(1)的面积为_;(2)已知点,那么四边形的面积为_(3)奥地利数学家皮克发现了一类快速求解格点多边形的方法,被称为皮克定理:如果用m表示格点多边形内的格点数,n表示格点多边形边上的格点数,那么格点多边形的面积S和m与n之间满足一种数量关系例如刚刚求解的几个多边形面积中,我们可以得到如表中信息:形内格点数m边界格点数n格点多边形面
15、积S611四边形811五边形208根据上述的例子,猜测皮克公式为_(用m,n表示),试计算图中六边形的面积为_(本大题无需写出解题过程,写出正确答案即可)25对于实数x,若,则符合条件的中最大的正数为的内数,例如:8的内数是5;7的内数是4(1)1的内数是_,20的内数是_,6的内数是_;(2)若3是x的内数,求x的取值范围;(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为,例如当时,如图2;当时,如图2,;用表示的内数;当的内数为9时,符合条件的最大实心正方形
16、有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标(若有多点并列最远,全部写出)26在平面直角坐标系xOy中,已知点M(a,b)如果存在点N(a,b),满足a|ab|,b|ab|,则称点N为点M的“控变点”(1)点A(1,2)的“控变点”B的坐标为 ;(2)已知点C(m,1)的“控变点”D的坐标为(4,n),求m,n的值;(3)长方形EFGH的顶点坐标分别为(1,1),(5,1),(5,4),(1,4)如果点P(x,2x)的“控变点”Q在长方形EFGH的内部,直接写出x的取值范围27阅读理解:例1解方程|x|2,因为在数轴上到原点的距离为2的点对应的数为2,所以方程|x|2的解
17、为x2例2解不等式|x1|2,在数轴上找出|x1|2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为1或3,所以方程|x1|2的解为x1或x3,因此不等式|x1|2的解集为x1或x3参考阅读材料,解答下列问题:(1)方程|x2|3的解为 ;(2)解不等式:|x2|1(3)解不等式:|x4|+|x+2|8(4)对于任意数x,若不等式|x+2|+|x4|a恒成立,求a的取值范围28某地葡萄丰收,准备将已经采摘下来的11400公斤葡萄运送杭州,现有甲、乙、丙三种车型共选择,每辆车运载能力和运费如表表示(假设每辆车均满载)车型甲乙丙汽车运载量(公斤/辆)600800900汽车运费(元/
18、辆)500600700(1)若全部葡萄都用甲、乙两种车型来运,需运费8700元,则需甲、乙两种车型各几辆?(2)为了节省运费,现打算用甲、乙、丙三种车型都参与运送,已知它们的总辆数为15辆,你能分别求出这三种车型的辆数吗?怎样安排运费最省?29在平面直角坐标系中,对于任意两点,如果,则称与互为“距点”例如:点,点,由,可得点与互为“距点”(1)在点,中,原点的“距点”是_(填字母);(2)已知点,点,过点作平行于轴的直线当时,直线上点的“距点”的坐标为_;若直线上存在点的“点”,求的取值范围(3)已知点,的半径为,若在线段上存在点,在上存在点,使得点与点互为“距点”,直接写出的取值范围30如图
19、,已知点,(1)求的面积;(2)点是在坐标轴上异于点的一点,且的面积等于的面积,求满足条件的点的坐标;(3)若点的坐标为,且,连接交于点,在轴上有一点,使的面积等于的面积,请直接写出点的坐标_(用含的式子表示)【参考答案】*试卷处理标记,请不要删除一、解答题1【应用】:(1)3;(2)(1,2)或(1,2);【拓展】:(1)5;(2)2或2;(3)4或8【分析】(应用)(1)根据若y1y2,则ABx轴,且线段AB的长度为|x1x2|,代入数据即可得出结论;(2)由CDy轴,可设点D的坐标为(1,m),根据CD2,可得|0m|2,故可求出m,即可求解;(拓展)(1)根据两点之间的折线距离公式,代
20、入数据即可得出结论;(2)根据两点之间的折线距离公式结合d(E,H)3,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q在x轴上,可设点Q的坐标为(x,0),根据三角形的面积公式结合三角形OPQ的面积为3即可求出x的值,再利用两点之间的折线距离公式即可得出结论;【详解】(应用):(1)AB的长度为|12|3故答案为:3(2)由CDy轴,可设点D的坐标为(1,m),CD2,|0m|2,解得:m2,点D的坐标为(1,2)或(1,2)故答案为:(1,2)或(1,2)(拓展):(1)d(E,F)|2(1)|+|0(2)|5故答案为:5(2)E(2,0),H(1,t),d(E,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 下册 期末 压轴 试题 答案 解析
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。