呼和浩特市人教版(七年级)初一下册数学期末压轴难题测试题及答案.doc
《呼和浩特市人教版(七年级)初一下册数学期末压轴难题测试题及答案.doc》由会员分享,可在线阅读,更多相关《呼和浩特市人教版(七年级)初一下册数学期末压轴难题测试题及答案.doc(26页珍藏版)》请在咨信网上搜索。
呼和浩特市人教版(七年级)初一下册数学期末压轴难题测试题及答案 一、选择题 1.的平方根是() A.2 B. C. D. 2.在下列图形中,不能通过其中一个三角形平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中有四个点,,,.其中在第一象限的点是( ). A. B. C. D. 4.下列命题中: ①若,则点在原点处; ②点一定在第四象限 ③已知点与点,m,n均不为0,则直线平行x轴; ④已知点A(2,-3),轴,且,则B点的坐标为(2,2). 以上命题是真命题的有( ) A.1个 B.2个 C.3个 D.4个 5.如图,,P为平行线之间的一点,若,CP平分∠ACD,,则∠BAP的度数为( ) A. B. C. D. 6.下列说法中,正确的是( ) A.(﹣2)3的立方根是﹣2 B.0.4的算术平方根是0.2 C.的立方根是4 D.16的平方根是4 7.如图,已知,平分,,则的度数是( ) A. B. C. D. 8.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0)、(2,0)、(2,1)、(3,2)、(3,1)、(3,0)、(4,0),……,根据这个规律探索可得,第20个点的坐标为( ) A.(6,4) B.(6,5) C.(7,3) D.(7,5) 二、填空题 9.已知,则x+y=___________ 10.若与点关于轴对称,则的值是___________; 11.如图,直线与直线交于点,、是与的角平分线,则______度. 12.如图,已知a//b,∠1=50°,∠2=115°,则∠3=______. 13.如图, 把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M 、N的位置上,若∠EFG=54°,则∠EGB=_______. 14.观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a+b的值为____. 15.在平面直角坐标系中,已知点P(﹣2,3),PA∥y轴,PA=3,则点A的坐标为__. 16.如图,在平面直角坐标系中,边长为1的等边△OA1A2的一条边OA2在x的正半轴上,O为坐标原点;将△OA1A2沿x轴正方向依次向右移动2个单位,依次得到△A3A4A5,△A6A7A8…,则顶点A2021的坐标为 __________________. 三、解答题 17.计算下列各式的值: (1)|–2|– + (–1)2021; (2). 18.求下列各式中的: (1); (2); (3). 19.完成下面的证明:如图,点、、分别是三角形的边、、上的点,连接,,,,连接交于点,求证:. 证明: ∵(已知) ∴(_______________) 又∵(已知) ∴(______________) ∴(_____________) ∴(______________) 20.已知点A(-2,3),B(4,3),C(-1,-3). (1)在平面直角坐标系中标出点A,B,C的位置; (2)求线段AB的长; (3)求点C到x轴的距离,点C到AB的距离; (4)求三角形ABC的面积; (5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标. 21.例如∵即,∴的整数部分为2,小数部分为,仿照上例回答下列问题; (1)介于连续的两个整数a和b之间,且a<b,那么a= ,b= ; (2)x是的小数部分,y是的整数部分,求x= ,y= ; (3)求的平方根. 二十二、解答题 22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件. (1)求正方形工料的边长; (2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,) 二十三、解答题 23.如图,已知直线射线CD,.P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP.作,交直线AB于点F,CG平分. (1)若点P,F,G都在点E的右侧,求的度数; (2)若点P,F,G都在点E的右侧,,求的度数; (3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由. 24.已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,,使. (1)如图①,若平分,求的度数; (2)如图②,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角. ①若,求的度数; ②若(n为正整数),直接用含n的代数式表示. 25.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数. 小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移: (1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由; (2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系. 26.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由; 【问题迁移】 如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β. (1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °. (2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC与α、β之间的数量关系,并说明理由. (图1) (图2) 【参考答案】 一、选择题 1.B 解析:B 【分析】 先计算出,再求出的平方根即可. 【详解】 解:∵, ∴的平方根是, 故选:B. 【点睛】 本题考查了平方根的概念和求法,掌握平方根的定义是解题的关键. 2.D 【分析】 根据平移的性质即可得出结论. 【详解】 解:A、能通过其中一个三角形平移得到,不合题意; B、能通过其中一个三角形平移得到,不合题意; C、能通过其中一个三角形平移得到,不合题意; D 解析:D 【分析】 根据平移的性质即可得出结论. 【详解】 解:A、能通过其中一个三角形平移得到,不合题意; B、能通过其中一个三角形平移得到,不合题意; C、能通过其中一个三角形平移得到,不合题意; D、不能通过其中一个三角形平移得到,上面的三角形需要由下面的三角形旋转才能得到,符合题意. 故选:D. 【点睛】 本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键. 3.A 【分析】 根据各象限内点的坐标特征解答即可. 【详解】 解:在第一象限; 在第二象限; 在第三象限; 在第四象限; 故选:A. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限. 4.B 【分析】 利用有理数的性质和坐标轴上点的坐标特征可对①进行判断;利用或可对②进行判断;利用、点的纵坐标相同可对③进行判断;通过把点坐标向上或向下平移5个单位得到点坐标可对④进行判断. 【详解】 解:若,则或,所以点坐标轴上,所以①为假命题; ,点一定在第四象限,所以②为真命题; 已知点与点,,均不为0,则直线平行轴,所以③为真命题; 已知点,轴,且,则点的坐标为或,所以④为假命题. 故选:B. 【点睛】 本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 5.A 【分析】 过P点作PMAB交AC于点M,直接利用平行线的性质以及平行公理分别分析即可得出答案. 【详解】 解:如图,过P点作PMAB交AC于点M. ∵CP平分∠ACD,∠ACD=68°, ∴∠4=∠ACD=34°. ∵ABCD,PMAB, ∴PMCD, ∴∠3=∠4=34°, ∵AP⊥CP, ∴∠APC=90°, ∴∠2=∠APC-∠3=56°, ∵PMAB, ∴∠1=∠2=56°, 即:∠BAP的度数为56°, 故选:A. 【点睛】 此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键. 6.A 【分析】 根据立方根的定义及平方根的定义依次判断即可得到答案. 【详解】 解:A.(﹣2)3的立方根是﹣2,故本选项符合题意; B.0.04的算术平方根是0.2,故本选项不符合题意; C. 的立方根是2,故本选项不符合题意; D.16的平方根是±4,故本选项不符合题意; 故选:A. 【点睛】 此题考查立方根的定义及平方根的定义,熟记定义是解题的关键. 7.B 【分析】 利用平行线的性质,角平分线的定义即可解决问题. 【详解】 解:∵,,平分, ∴,, ∵, ∴, 故选:B. 【点睛】 本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.A 【分析】 横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数. 【详 解析:A 【分析】 横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数. 【详解】 解:把第一个点作为第一列,和作为第二列, 依此类推,则第一列有一个数,第二列有2个数, 第列有个数.则列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上. 因为,则第20个数一定在第6列,由下到上是第4个数. 因而第20个点的坐标是. 故选:A. 【点睛】 本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目. 二、填空题 9.-1 【解析】 【分析】 根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解. 【详解】 解:由题意得,x-2=0,x2-3y-13=0, 解得x=2,y=-3, 所以,x+y=2+ 解析:-1 【解析】 【分析】 根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解. 【详解】 解:由题意得,x-2=0,x2-3y-13=0, 解得x=2,y=-3, 所以,x+y=2+(-3)=-1. 故答案为:-1. 【点睛】 本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0. 10.1 【分析】 根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案. 【详解】 由点与点的坐标关于y轴对称,得: ,, 解得:,, ∴. 故答案为:. 【点睛】 本题 解析:1 【分析】 根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案. 【详解】 由点与点的坐标关于y轴对称,得: ,, 解得:,, ∴. 故答案为:. 【点睛】 本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数. 11.60 【分析】 由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数. 【详解】 ∵OE平分∠AOC, ∴∠AOE=∠EOC, ∵OC平分∠BOE, ∴ 解析:60 【分析】 由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数. 【详解】 ∵OE平分∠AOC, ∴∠AOE=∠EOC, ∵OC平分∠BOE, ∴∠EOC=∠COB ∴∠AOE=∠EOC=∠COB, ∵∠AOE+∠EOC+∠COB=180︒ ∴∠COB=60°, ∴∠AOD=∠COB=60°, 故答案为:60 【点睛】 本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键. 12.65° 【分析】 根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解. 【详解】 解:如图: ∵a//b,∠1=50°, ∴∠4=∠1=50°, ∵∠2=115°,∠2=∠3+∠4, 解析:65° 【分析】 根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解. 【详解】 解:如图: ∵a//b,∠1=50°, ∴∠4=∠1=50°, ∵∠2=115°,∠2=∠3+∠4, ∴∠3=∠2﹣∠4=115°﹣50°=65°. 故答案为:65°. 【点睛】 此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键. 13.108° 【分析】 由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的 解析:108° 【分析】 由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的性质求得∠EGB. 【详解】 解:∵AD∥BC,∠EFG=54°, ∴∠DEF=∠EFG=54°,∠1+∠2=180°, 由折叠的性质可得:∠GEF=∠DEF=54°, ∴∠1=180°-∠GEF-∠DEF=180°-54°-54°=72°, ∴∠EGB=180°-∠1=108°. 故答案为:108°. 【点睛】 此题主要考查折叠的性质,平行线的性质和平角的定义,解决问题的关键是根据折叠的方法找准对应角,求出∠GEF的度数. 14.【分析】 由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n﹣1+2n,即可得出答案. 【详解】 由图可知, 每个图形的最上面的小正方形中的数字是连续奇数,所以第n 解析:【分析】 由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n﹣1+2n,即可得出答案. 【详解】 由图可知, 每个图形的最上面的小正方形中的数字是连续奇数,所以第n个图形中最上面的小正方形中的数字是2n﹣1, 即2n﹣1=11,n=6. ∵2=21,4=22,8=23,…,左下角的小正方形中的数字是2n,∴b=26=64. ∵右下角中小正方形中的数字是2n﹣1+2n,∴a=11+b=11+64=75,∴a+b=75+64=139. 故答案为:139. 【点睛】 本题主要考查了数字变化规律,观察出题目正方形的数字的规律是解题的关键. 15.(-2,6)或(-2,0). 【分析】 根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案. 【详解】 解:由点P(-2,3),PA∥y轴,PA=3,得 在P点 解析:(-2,6)或(-2,0). 【分析】 根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案. 【详解】 解:由点P(-2,3),PA∥y轴,PA=3,得 在P点上方的A点坐标(-2,6), 在P点下方的A点坐标(-2,0), 故答案为:(-2,6)或(-2,0). 【点睛】 本题考查了点的坐标,掌握平行于y轴的直线上点的横坐标相等是解题关键,注意到一点距离相等的点有两个,以防遗漏. 16.(1346.5,). 【分析】 观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标. 【详解】 解:是等边三角形,边长为1 ,,,,… 观察图形可知,3个点一个循 解析:(1346.5,). 【分析】 观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标. 【详解】 解:是等边三角形,边长为1 ,,,,… 观察图形可知,3个点一个循环,每个循环向右移动2个单位 2021÷3=673…1, 673×2=1346,故顶点A2021的坐标是(1346.5,). 故答案为:(1346.5,). 【点睛】 本题考查了平面直角坐标系点的规律,等边三角形的性质,勾股定理,找到规律是解题的关键. 三、解答题 17.(1)3;(2)–2 【分析】 (1)根据绝对值、立方根、乘方解决此题. (2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题. 【详解】 解:(1)原式=, =3. (2)原式, = 解析:(1)3;(2)–2 【分析】 (1)根据绝对值、立方根、乘方解决此题. (2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题. 【详解】 解:(1)原式=, =3. (2)原式, =3+1-6, =–2. 【点睛】 本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键. 18.(1)0.3;(2);(3)或 【分析】 (1)先移项,再求立方根即可; (2)先两边同时除以49,再求平方根即可; (3)先开平方,可得两个一元一次方程,再解一元一次方程即可. 【详解】 解:(1 解析:(1)0.3;(2);(3)或 【分析】 (1)先移项,再求立方根即可; (2)先两边同时除以49,再求平方根即可; (3)先开平方,可得两个一元一次方程,再解一元一次方程即可. 【详解】 解:(1)∵, ∴, ∴; (2)∵, ∴, ∴; (3)∵, ∴或, 解得:或. 【点睛】 本题主要考查学生对平方根、立方根概念的运用,熟练掌握平方根与立方根的定义是解决本题的关键. 19.两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补 【分析】 根据平行线的性质与判定进行证明即可得到答案. 【详解】 证明:∵(已知) ∴(两直线平行,同位角相等) 解析:两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补 【分析】 根据平行线的性质与判定进行证明即可得到答案. 【详解】 证明:∵(已知) ∴(两直线平行,同位角相等) 又∵(已知) ∴(等量代换) ∴(同位角相等,两直线平行) ∴.(两直线平行,同旁内角互补) 【点睛】 本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 20.(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3) 【分析】 (1)根据三个点的坐标,在坐标系中标出来对应的位置即可; (2)根据两点坐标求出两点的距离即可; (3)根 解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3) 【分析】 (1)根据三个点的坐标,在坐标系中标出来对应的位置即可; (2)根据两点坐标求出两点的距离即可; (3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解; (4)根据三角形面积=AB的长×C到直线AB的距离求解即可; (5)根据同底等高的两个三角形面积相等即可求解. 【详解】 解:(1)如图所示,即为所求; (2)∵A(-2,3),B(4,3), ∴AB=4-(-2)=6; (3)∵C(-1,-3), ∴C到x轴的距离为3,到直线AB的距离为6; (4)∵AB=6,C到直线AB的距离为6, ∴; (5)如图所示,三角形ABP与三角形ABC同底等高,即为所求 ∴P(0,-3); 同理当P在AB的上方还有一个到AB距离是6的点满足要求,即P(0,9); ∴P(0,-3)或(0,9). 【点睛】 本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解. 21.(1),;(2);(3) 【分析】 (1)根据的范围确定出、的值; (2)求出,的范围,即可求出、的值,代入求出即可; (3)将代入中即可求出. 【详解】 解:(1), , ,, 故答案是:,; ( 解析:(1),;(2);(3) 【分析】 (1)根据的范围确定出、的值; (2)求出,的范围,即可求出、的值,代入求出即可; (3)将代入中即可求出. 【详解】 解:(1), , ,, 故答案是:,; (2), ,, 的小数部分为:, 的整数部分为:3; 故答案是:; (3), , 的平方根为:. 【点睛】 本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出. 二十二、解答题 22.(1)6分米;(2)满足. 【分析】 (1)由正方形面积可知,求出的值即可; (2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可. 【详解】 解:( 解析:(1)6分米;(2)满足. 【分析】 (1)由正方形面积可知,求出的值即可; (2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可. 【详解】 解:(1)正方形工料的边长为分米; (2)设长方形的长为4a分米,则宽为3a分米. 则, 解得:, 长为,宽为 ∴满足要求. 【点睛】 本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题. 二十三、解答题 23.(1)40°;(2)65°;(3)存在,56°或20° 【分析】 (1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G 解析:(1)40°;(2)65°;(3)存在,56°或20° 【分析】 (1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可. 【详解】 解:(1)∵∠CEB=100°,AB∥CD, ∴∠ECQ=80°, ∵∠PCF=∠PCQ,CG平分∠ECF, ∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°; (2)∵AB∥CD ∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°, ∴∠EGC+∠ECG=80°, 又∵∠EGC-∠ECG=30°, ∴∠EGC=55°,∠ECG=25°, ∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°, ∵PQ∥CE, ∴∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x, ①当点G、F在点E的右侧时, 则∠ECG=x,∠PCF=∠PCD=x, ∵∠ECD=80°, ∴x+x+x+x=80°, 解得x=16°, ∴∠CPQ=∠ECP=x+x+x=56°; ②当点G、F在点E的左侧时, 则∠ECG=∠GCF=x, ∵∠CGF=180°-4x,∠GCQ=80°+x, ∴180°-4x=80°+x, 解得x=20°, ∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°, ∴∠PCQ=∠FCQ=60°, ∴∠CPQ=∠ECP=80°-60°=20°. 【点睛】 本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等. 24.(1);(2)①;②. 【分析】 (1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论; (2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最 解析:(1);(2)①;②. 【分析】 (1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论; (2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论; ②根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论. 【详解】 解:(1)∵平分,, ∴, ∴, ∴, ∴; (2)①∵, ∴∠EOC+∠COD=∠BOD+∠COD, ∴∠EOC=∠BOD, ∵,, ∴, ∴, ∴, ∴; ②∵, ∴∠EOC+∠COD=∠BOD+∠COD, ∴∠EOC=∠BOD, ∵,, ∴, ∴, ∴, ∴. 【点睛】 本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键. 25.(1),理由见解析; (2)当点P在B、O两点之间时,; 当点P在射线AM上时,. 【分析】 (1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C 解析:(1),理由见解析; (2)当点P在B、O两点之间时,; 当点P在射线AM上时,. 【分析】 (1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案; (2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论. 【详解】 解:(1)∠CPD=∠α+∠β,理由如下: 如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE+∠CPE=∠α+∠β. (2)当点P在A、M两点之间时,∠CPD=∠β-∠α. 理由:如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠CPE-∠DPE=∠β-∠α; 当点P在B、O两点之间时,∠CPD=∠α-∠β. 理由:如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE-∠CPE=∠α-∠β. 【点睛】 本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决. 26.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α – β,理由见解析. 【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C 解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α – β,理由见解析. 【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案; (2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案. 【问题探究】解:∠DPC=α+β 如图, 过P作PH∥DF ∵DF∥CE, ∴∠PCE=∠1=α, ∠PDF=∠2 ∵∠DPC=∠2+∠1=α+β 【问题迁移】(1)70 (图1) ( 图2) (2) 如图1,∠DPC=β -α ∵DF∥CE, ∴∠PCE=∠1=β, ∵∠DPC=∠1-∠FDP=∠1-α. ∴∠DPC=β -α 如图2,∠DPC= α -β ∵DF∥CE, ∴∠PDF=∠1=α ∵∠DPC=∠1-∠ACE=∠1-β. ∴∠DPC=α - β- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 呼和浩特市 人教版 年级 初一 下册 数学 期末 压轴 难题 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文