人教版七年级下册数学-期末试卷试卷(word版含答案).doc
《人教版七年级下册数学-期末试卷试卷(word版含答案).doc》由会员分享,可在线阅读,更多相关《人教版七年级下册数学-期末试卷试卷(word版含答案).doc(26页珍藏版)》请在咨信网上搜索。
人教版七年级下册数学 期末试卷试卷(word版含答案) 一、选择题 1.如图,下列各组角中是同位角的是( ) A.∠1和∠2 B.∠3和∠4 C.∠2和∠4 D.∠1和∠4 2.在下面的四幅图案中,能通过图案(1)平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中有四个点,,,.其中在第一象限的点是( ). A. B. C. D. 4.下列命题:(1)无理数是无限小数;(2)过一点有且只有一条直线与已知直线平行;(3)过一点有且只有一条直线与已知直线垂直;(4)平方根等于它本身的数是0和1,其中是假命题的个数有( ) A.1个 B.2个 C.3个 D.4个 5.把一块直尺与一块含的直角三角板如图放置,若,则的度数为( ) A. B. C. D.124° 6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A.①② B.①③ C.①②③ D.①②④ 7.如图,已知直线,点为直线上一点,为射线上一点.若,,交于点,则的度数为( ) A.45° B.55° C.60° D.75° 8.如图,在平面直角坐标系中,点A从原点O出发,按A→A1→A2→A3→A4→A5…依次不断移动,每次移动1个单位长度,则A2021的坐标为( ) A.(673,﹣1) B.(673,1) C.(674,﹣1) D.(674,1) 二、填空题 9.的算术平方根为__________ 10.小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_______. 11.已知点A(3a+5,a﹣3)在二、四象限的角平分线上,则a=__________. 12.如图,直线,相交于点E,.若,则等于_____. 13.如图,在中,,点D是的中点,点E在上,将沿折叠,若点B的落点在射线上,则与所夹锐角的度数是________. 14.已知a,b为两个连续的整数,且,则的平方根为___________. 15.已知点A在x轴上方,y轴左侧,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是______________. 16.如图,在平面直角坐标系上有点A(1,0),第一次点A跳动至点A1(﹣1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(﹣2,2),第四次点A3跳动至点A4(3,2),…依此规律跳动下去,则点A2021与点A2022之间的距离是_______. 三、解答题 17.计算(每小题4分) (1) (2). (3). (4)+|﹣2 | + ( -1 )2017 18.求下列各式中的的值: (1); (2). 19.补全下列推理过程: 如图,已知EF//AD,∠1=∠2,∠BAC=70°,求∠AGD. 解:∵EF//AD ∴∠2= ( ) 又∵∠1=∠2( ) ∴∠1=∠3( ) ∴AB// ( ) ∴∠BAC+ =180°( ) ∵∠BAC=70° ∴∠AGD= . 20.在平面坐标系中描出下列各点且标该点字母: (1)点,,,; (2)点在轴上,位于原点右侧,距离原点2个单位长度; (3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度. 21.已知某正数的两个不同的平方根是3a﹣14和a+2;b+11的立方根为﹣3;c是的整数部分; (1)求a+b+c的值; (2)求3a﹣b+c的平方根. 二十二、解答题 22.已知足球场的形状是一个长方形,而国际标准球场的长度和宽度(单位:米)的取值范围分别是,.若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由. 二十三、解答题 23.已知AB//CD. (1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D; (2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F. ①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数. ②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示) 24.问题情境 (1)如图1,已知,,,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得________. 问题迁移 (2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,,,与相交于点,有一动点在边上运动,连接,,记,. ①如图2,当点在,两点之间运动时,请直接写出与,之间的数量关系; ②如图3,当点在,两点之间运动时,与,之间有何数量关系?请判断并说明理由;拓展延伸 (3)当点在,两点之间运动时,若,的角平分线,相交于点,请直接写出与,之间的数量关系. 25.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数; (2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数; (3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由. 26.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”. (1)如图1,在中,,是的角平分线,求证:是“准互余三角形”; (2)关于“准互余三角形”,有下列说法: ①在中,若,,,则是“准互余三角形”; ②若是“准互余三角形”,,,则; ③“准互余三角形”一定是钝角三角形. 其中正确的结论是___________(填写所有正确说法的序号); (3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数. 【参考答案】 一、选择题 1.D 解析:D 【分析】 根据同位角的定义分析即可,两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角. 【详解】 A. ∠1和∠2是邻补角,不符合题意; B. ∠3和∠4是同旁内角,不符合题意; C. ∠2和∠4没有关系,不符合题意; D. ∠1和∠4是同位角,符合题意; 故选D. 【点睛】 本题考查了同位角的定义,理解同位角的定义是解题的关键. 2.C 【分析】 平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可. 【详解】 解:A、对应点的连线相交,不能通过平移得到,不符合题意; B、对应点的连线相交,不能通过平移得到,不符合题 解析:C 【分析】 平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可. 【详解】 解:A、对应点的连线相交,不能通过平移得到,不符合题意; B、对应点的连线相交,不能通过平移得到,不符合题意; C、可通过平移得到,符合题意; D、对应点的连线相交,不能通过平移得到,不符合题意; 故选:C. 【点睛】 本题考查了平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型. 3.A 【分析】 根据各象限内点的坐标特征解答即可. 【详解】 解:在第一象限; 在第二象限; 在第三象限; 在第四象限; 故选:A. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限. 4.C 【分析】 根据无理数的定义,平行线公理,垂线的性质,平方根的定义逐项判断即可. 【详解】 解:(1)应该是无理数是无限不循环小数,是无限小数,故(1)是真命题; (2)应该是过直线外一点,有且只有一条直线与已知直线平行,故(2)是假命题; (3)应该是同一平面内,过一点有且只有一条直线与已知直线垂直,故(3)是假命题; (4)1的平方根 ,故(4)是假命题; 所以假命题的个数有3个, 故选:C. 【点睛】 本题主要考查了无理数的定义,平行线公理,垂线的性质,平方根的定义,熟练掌握相关知识点是解题的关键. 5.D 【分析】 根据角的和差可先计算出∠AEF,再根据两直线平行同旁内角互补即可得出∠2的度数. 【详解】 解:由题意可知AD//BC,∠FEG=90°, ∵∠1=34°,∠FEG=90°, ∴∠AEF=90°-∠1=56°, ∵AD//BC, ∴∠2=180°-∠AEF=124°, 故选:D. 【点睛】 本题考查平行线的性质.熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键. 6.A 【分析】 根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可. 【详解】 ①两个无理数的和可能是有理数,说法正确 如:和是无理数,,0是有理数 ②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确 ③是二次二项式,说法错误 ④立方根是本身的数有0和,说法错误 综上,说法正确的是①② 故选:A. 【点睛】 本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键. 7.C 【分析】 利用,及平行线的性质,得到,再借助角之间的比值,求出,从而得出的大小. 【详解】 解:, , , , ,, , , , , 故选:. 【点睛】 本题考查了平行线的性质的综合应用,涉及的知识点有:平行线的性质、邻补角、三角形的内角和等知识,体现了数学的转化思想、见比设元等思想. 8.C 【分析】 根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标. 【详解】 解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7 解析:C 【分析】 根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标. 【详解】 解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7(2,1),…, 点坐标运动规律可以看作每移动6次一个循环,每个循环向右移动2个单位, 则2021÷6=336…5, 所以,前336次循环运动点共向右运动336×2=672个单位,且在x轴上, 再运动5次即向右移动2个单位,向下移动一个单位, 则A2021的坐标是(674,﹣1). 故选:C. 【点睛】 本题考查了平面直角坐标系点的规律,找到规律是解题的关键. 二、填空题 9.4 【分析】 先利用平方的意义求出值,再利用算术平方根的概念求解即可. 【详解】 =16,16的算术平方根是4 故答案为4. 【点睛】 本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与 解析:4 【分析】 先利用平方的意义求出值,再利用算术平方根的概念求解即可. 【详解】 =16,16的算术平方根是4 故答案为4. 【点睛】 本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与平方根的区别. 10.21:05. 【分析】 利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称. 【详解】 解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所 解析:21:05. 【分析】 利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称. 【详解】 解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05. 故答案为21:05 【点睛】 本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧. 11.﹣ 【详解】 ∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0, ∴3a+5+a-3=0, ∴a=﹣. 故答案是:﹣. 解析:﹣ 【详解】 ∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0, ∴3a+5+a-3=0, ∴a=﹣. 故答案是:﹣. 12.80°. 【分析】 先根据补角的定义求出∠BEC的度数,再由平行线的性质即可得出结论. 【详解】 解:∵∠AEC=100°, ∴∠BEC=180°-100°=80°. ∵DF∥AB, ∴∠D=∠BE 解析:80°. 【分析】 先根据补角的定义求出∠BEC的度数,再由平行线的性质即可得出结论. 【详解】 解:∵∠AEC=100°, ∴∠BEC=180°-100°=80°. ∵DF∥AB, ∴∠D=∠BEC=80°. 故答案为:80°. 【点睛】 本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等. 13.. 【分析】 根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐角的度数. 【详解】 如下图,连接DE,与 解析:. 【分析】 根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐角的度数. 【详解】 如下图,连接DE,与相交于点O, 将 △BDE 沿 DE 折叠, , , 又∵D为BC的中点,, , , , , 即与所夹锐角的度数是. 故答案为:. 【点睛】 本题考察了轴对称的性质、全等三角形的性质、中点的性质、三角形的外角以及内角和定理,综合运用以上性质定理是解题的关键. 14.±3 【分析】 分别算出a,b计算即可; 【详解】 ∵a,b为两个连续的整数,且, ∴, ∴, ∴,, ∴, ∴的平方根为±3; 故答案是:±3. 【点睛】 本题主要考查了无理数的估算和求一个数的平 解析:±3 【分析】 分别算出a,b计算即可; 【详解】 ∵a,b为两个连续的整数,且, ∴, ∴, ∴,, ∴, ∴的平方根为±3; 故答案是:±3. 【点睛】 本题主要考查了无理数的估算和求一个数的平方根,准确计算是解题的关键. 15.(-4,3) . 【分析】 到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值. 【详解】 解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A的坐 解析:(-4,3) . 【分析】 到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值. 【详解】 解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A的坐标为(-4,3) 故答案为:(-4,3) . 【点睛】 本题考查点的坐标,利用数形结合思想解题是关键. 16.2023 【分析】 根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2 解析:2023 【分析】 根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2022的坐标,进而可求出点A2021与点A2022之间的距离. 【详解】 解:观察发现,第2次跳动至点的坐标是(2,1), 第4次跳动至点的坐标是(3,2), 第6次跳动至点的坐标是(4,3), 第8次跳动至点的坐标是(5,4), … 第2n次跳动至点的坐标是(n+1,n), 则第2022次跳动至点的坐标是(1012,1011), 第2021次跳动至点的坐标是(-1011,1011). ∵点A2021与点A2022的纵坐标相等, ∴点A2021与点A2022之间的距离=1012-(-1011)=2023, 故答案为:2023. 【点睛】 本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键. 三、解答题 17.(1)0;(2);(3)1;(4)3. 【分析】 (1)先算根号和平方,再根据实数的加减运算计算即可得出答案; (2)先去绝对值,再根据实数的加减运算法则计算即可得出答案; (3)先算绝对值、立方根 解析:(1)0;(2);(3)1;(4)3. 【分析】 (1)先算根号和平方,再根据实数的加减运算计算即可得出答案; (2)先去绝对值,再根据实数的加减运算法则计算即可得出答案; (3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案; (4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案. 【详解】 解:(1)原式=-3+4-3 =-2 (2)原式= = (3)原式=2+(-2)+1 =1 (4)原式=2+2-1 =3 【点睛】 本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则. 18.(1);(2). 【分析】 (1)先将原式变形为形式,再利用平方根的定义开平方求出答案; (2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案. 【详解】 解:(1), , , 解析:(1);(2). 【分析】 (1)先将原式变形为形式,再利用平方根的定义开平方求出答案; (2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案. 【详解】 解:(1), , , ; (2), , , 解得:. 【点睛】 此题主要考查了平方根以及立方根的定义,正确把握相关定义解方程是解题关键. 19.∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110° 【分析】 根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得 解析:∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110° 【分析】 根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB//DG,根据平行线的性质推出∠BAC+∠AGD=180°,代入求出即可求得∠AGD. 【详解】 解:∵EF//AD, ∴∠2=∠3(两直线平行,同位角相等), 又∵∠1=∠2(已知), ∴∠1=∠3(等量代换), ∴AB//DG,(内错角相等,两直线平行) ∴∠BAC+∠AGD=180°,(两直线平行,同旁内角互补) ∵∠BAC=70°, ∴∠AGD=110° 故答案为:∠3,两直线平行,同位角相等,已知,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补;110°. 【点睛】 本题考查了平行线的性质和判定的应用,能正确根据平行线的性质和判定定理进行推理是解此题的关键. 20.(1)见解析;(2)见解析;(3)见解析 【分析】 (1)直接在平面直角坐标系内描出各点即可; (2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可; (3)根据题意确定点 的坐标,然后 解析:(1)见解析;(2)见解析;(3)见解析 【分析】 (1)直接在平面直角坐标系内描出各点即可; (2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可; (3)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可. 【详解】 解:(1)如图 , (2)∵点在轴上,位于原点右侧,距离原点2个单位长度, ∴点 ; (3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度, ∴点 . 【点睛】 本题主要考查了平面直角坐标系内点的坐标,正确把握点的坐标的性质是解题的关键. 21.(1)-33;(2) 【分析】 (1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值; (2)分别将a,b,c的值代入3a-b+c,可 解析:(1)-33;(2) 【分析】 (1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值; (2)分别将a,b,c的值代入3a-b+c,可解答. 【详解】 解:(1)∵某正数的两个平方根分别是3a-14和a+2, ∴(3a-14)+(a+2)=0, ∴a=3, 又∵b+11的立方根为-3, ∴b+11=(-3)3=-27, ∴b=-38, 又∵, ∴, 又∵c是的整数部分, ∴c=2; ∴a+b+c=3+(-38)+2=-33; (2)当a=3,b=-38,c=2时, 3a-b+c=3×3-(-38)+2=49, ∴3a-b+c的平方根是±7. 【点睛】 本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义. 二十二、解答题 22.符合,理由见解析 【分析】 根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案. 【详解】 解:符合,理由如下: 设宽为b米,则长为1.5b米,由题意得, 1.5b×b 解析:符合,理由见解析 【分析】 根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案. 【详解】 解:符合,理由如下: 设宽为b米,则长为1.5b米,由题意得, 1.5b×b=7350, ∴b=70,或b=-70(舍去), 即宽为70米,长为1.5×70=105米, ∵100≤105≤110,64≤70≤75, ∴符合国际标准球场的长宽标准. 【点睛】 本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提. 二十三、解答题 23.(1)见解析;(2)55°;(3) 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图 解析:(1)见解析;(2)55°;(3) 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数. 【详解】 解:(1)如图1,过点作, 则有, , , , ; (2)①如图2,过点作, 有. , . . . 即, 平分,平分, ,, . 答:的度数为; ②如图3,过点作, 有. , , . . . 即, 平分,平分, ,, . 答:的度数为. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 24.(1);(2)①,②,理由见解析;(3) 【分析】 (1)过点作,则,由平行线的性质可得的度数; (2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系; ②过作,依据平行线的性质可得,,即 解析:(1);(2)①,②,理由见解析;(3) 【分析】 (1)过点作,则,由平行线的性质可得的度数; (2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系; ②过作,依据平行线的性质可得,,即可得到; (3)过和分别作的平行线,依据平行线的性质以及角平分线的定义,即可得到与,之间的数量关系为. 【详解】 解:(1)如图1,过点作,则, 由平行线的性质可得,, 又∵,, ∴, 故答案为:; (2)①如图2,与,之间的数量关系为; 过点P作PM∥FD,则PM∥FD∥CG, ∵PM∥FD, ∴∠1=∠α, ∵PM∥CG, ∴∠2=∠β, ∴∠1+∠2=∠α+∠β, 即:, ②如图,与,之间的数量关系为;理由: 过作, ∵, ∴, ∴,, ∴; (3)如图, 由①可知,∠N=∠3+∠4, ∵EN平分∠DEP,AN平分∠PAC, ∴∠3=∠α,∠4=∠β, ∴, ∴与,之间的数量关系为. 【点睛】 本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论. 25.(1)∠E=45°;(2)∠E=;(3)不变化, 【分析】 (1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠ 解析:(1)∠E=45°;(2)∠E=;(3)不变化, 【分析】 (1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,则可得∠E= (∠D+∠B),继而求得答案; (2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案. (3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案. 【详解】 解:(1)∵CE平分∠BCD,AE平分∠BAD ∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD, ∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB, ∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB ∴∠D+∠B=2∠E, ∴∠E=(∠D+∠B), ∵∠ADC=50°,∠ABC=40°, ∴∠AEC= ×(50°+40°)=45°; (2)延长BC交AD于点F, ∵∠BFD=∠B+∠BAD, ∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D, ∵CE平分∠BCD,AE平分∠BAD ∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD, ∵∠E+∠ECB=∠B+∠EAB, ∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD =∠B+∠BAE-(∠B+∠BAD+∠D) = (∠B-∠D), ∠ADC=α°,∠ABC=β°, 即∠AEC= (3)的值不发生变化, 理由如下: 如图,记与交于,与交于, ①, ②, ①-②得: AD平分∠BAC, 【点睛】 此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用. 26.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110° 【分析】 (1)由和是的角平分线,证明即可; (2)根据“准互余三角形”的定义逐个判断即可; (3)根据“准互余三角 解析:(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110° 【分析】 (1)由和是的角平分线,证明即可; (2)根据“准互余三角形”的定义逐个判断即可; (3)根据“准互余三角形”的定义,分类讨论:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案. 【详解】 (1)证明:∵在中,, ∴, ∵BD是的角平分线, ∴, ∴, ∴是“准互余三角形”; (2)①∵, ∴, ∴是“准互余三角形”, 故①正确; ②∵, , ∴, ∴不是“准互余三角形”, 故②错误; ③设三角形的三个内角分别为,且, ∵三角形是“准互余三角形”, ∴或, ∴, ∴, ∴“准互余三角形”一定是钝角三角形, 故③正确; 综上所述,①③正确, 故答案为:①③; (3)∠APB的度数是10°或20°或40°或110°; 如图①, 当2∠A+∠ABC=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A=20°, ∴∠APB=110°; 如图②,当∠A+2∠APB=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A+∠APB=50°, ∴∠APB=40°; 如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠APB=20°; 如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A+∠APB=50°, 所以∠A=40°, 所以∠APB=10°; 综上,∠APB的度数是10°或20°或40°或110°时,是“准互余三角形”. 【点睛】 本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 期末试卷 试卷 word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文