2020-2021备战中考数学二次函数(大题培优)附答案.doc
《2020-2021备战中考数学二次函数(大题培优)附答案.doc》由会员分享,可在线阅读,更多相关《2020-2021备战中考数学二次函数(大题培优)附答案.doc(30页珍藏版)》请在咨信网上搜索。
2020-2021备战中考数学二次函数(大题培优)附答案 一、二次函数 1.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3). (1)求这个二次函数的表达式; (2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC. ①求线段PM的最大值; ②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标. 【答案】(1)二次函数的表达式y=x2﹣2x﹣3;(2)①PM最大=;②P(2,﹣3)或(3-,2﹣4). 【解析】 【分析】 (1)根据待定系数法,可得答案; (2)①根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案. 【详解】 (1)将A,B,C代入函数解析式, 得,解得, 这个二次函数的表达式y=x2﹣2x﹣3; (2)设BC的解析式为y=kx+b, 将B,C的坐标代入函数解析式,得 ,解得, BC的解析式为y=x﹣3, 设M(n,n﹣3),P(n,n2﹣2n﹣3), PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+, 当n=时,PM最大=; ②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2, 解得n1=0(不符合题意,舍),n2=2, n2﹣2n﹣3=-3, P(2,-3); 当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2, 解得n1=0(不符合题意,舍),n2=3+(不符合题意,舍),n3=3-, n2﹣2n﹣3=2-4, P(3-,2-4); 综上所述:P(2,﹣3)或(3-,2﹣4). 【点睛】 本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法. 2.如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C. (1)求抛物线的解析式; (2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标. 【答案】(1)抛物线的解析式为y=﹣x2﹣2x+3;(2)当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,3). 【解析】 【分析】 (1)根据正切函数,可得OB,根据旋转的性质,可得△DOC≌△AOB,根据待定系数法,可得函数解析式; (2)分两种情况讨论:①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点;②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,得到△EFC∽△EMP,根据相似三角形的性质,可得PM与ME的关系,解方程,可得t的值,根据自变量与函数值的对应关系,可得答案. 【详解】 (1)在Rt△AOB中,OA=1,tan∠BAO3,∴OB=3OA=3. ∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A,B,C的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为 ,解得:,抛物线的解析式为y=﹣x2﹣2x+3; (2)∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴为l1,∴E点坐标为(﹣1,0),如图,分两种情况讨论: ①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4); ②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,∵∠CFE=∠PME=90°,∠CEF=∠PEM,∴△EFC∽△EMP,∴,∴MP=3ME. ∵点P的横坐标为t,∴P(t,﹣t2﹣2t+3). ∵P在第二象限,∴PM=﹣t2﹣2t+3,ME=﹣1﹣t,t<0,∴﹣t2﹣2t+3=3(﹣1﹣t),解得:t1=﹣2,t2=3(与t<0矛盾,舍去). 当t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3,∴P(﹣2,3). 综上所述:当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,3). 【点睛】 本题是二次函数综合题.解(1)的关键是利用旋转的性质得出OC,OD的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP=3ME. 3.已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示. (1)求这个抛物线的解析式; (2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,求出点C,D的坐标,并判断△BCD的形状; (3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式. 【答案】(1);(2)C(3,0),D(1,﹣4),△BCD是直角三角形;(3) 【解析】 试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式; (2)先解方程求出抛物线与x轴的交点,再判断出△BOC和△BED都是等腰直角三角形,从而得到结论; (3)先求出QF=1,再分两种情况,当点P在点M上方和下方,分别计算即可. 试题解析:解(1)∵,∴,,∵m,n是一元二次方程的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线的图象经过点A(m,0),B(0,n),∴,∴,∴抛物线解析式为; (2)令y=0,则,∴,,∴C(3,0),∵=,∴顶点坐标D(1,﹣4),过点D作DE⊥y轴,∵OB=OC=3,∴BE=DE=1,∴△BOC和△BED都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD是直角三角形; (3)如图,∵B(0,﹣3),C(3,0),∴直线BC解析式为y=x﹣3,∵点P的横坐标为t,PM⊥x轴,∴点M的横坐标为t,∵点P在直线BC上,点M在抛物线上,∴P(t,t﹣3),M(t,),过点Q作QF⊥PM,∴△PQF是等腰直角三角形,∵PQ=,∴QF=1. ①当点P在点M上方时,即0<t<3时,PM=t﹣3﹣()=,∴S=PM×QF==,②如图3,当点P在点M下方时,即t<0或t>3时,PM=﹣(t﹣3)=,∴S=PM×QF=()=. 综上所述,S=. 考点:二次函数综合题;分类讨论. 4.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为m. (1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离; (2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过? (3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米? 【答案】(1)抛物线的函数关系式为y=x2+2x+4,拱顶D到地面OA的距离为10 m;(2)两排灯的水平距离最小是4 m. 【解析】 【详解】 试题分析:根据点B和点C在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值. 试题解析:(1)由题知点在抛物线上 所以,解得,所以 所以,当时, 答:,拱顶D到地面OA的距离为10米 (2)由题知车最外侧与地面OA的交点为(2,0)(或(10,0)) 当x=2或x=10时,,所以可以通过 (3)令,即,可得,解得 答:两排灯的水平距离最小是 考点:二次函数的实际应用. 5.如图,抛物线y=ax2+bx+4与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C. (1)求抛物线的解析式; (2)如图1,D为抛物线对称轴上一动点,求D运动到什么位置时△DAC的周长最小; (3)如图2,点E在第一象限抛物线上,AE与BC交于点F,若AF:FE=2:1,求E点坐标; (4)点M、N同时从B点出发,分别沿BA、BC方向运动,它们的运动速度都是1个单位/秒,当点M运动到点A时,点N停止运动,则当点N停止运动后,在x轴上是否存在点P,使得△PBN是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由. 【答案】(1)(2)(3)点P的坐标P1(﹣1,0)或P2(7,0)或P3(﹣,0)或P4(,0). 【解析】 【分析】 (1)直接待定系数法代入求解即可 (2)找到D点在对称轴时是△DAC周长最小的点,先求出直线BC,然后D点横坐标是1,直接代入直线BC求出纵坐标即可 (3)作EH∥AB交BC于H,则∠FAB=∠FEH,∠FBA=∠FHE,易证△ABF∽△EHF,得,得EH=2,设E(x,),则H(x﹣2,),yE=yH,解出方程x=1或x=2,得到E点坐标 (4)△PBN是等腰三角形,分成三种情况,①BP=BC时,利用等腰三角性质直接得到P1(﹣1,0)或P2(7,0),②当NB=NP时,作NH⊥x轴,易得△NHB∽△COB,利用比例式得到NH、 BH从而得到 PH=BH,BP,进而得到OP,即得到P点坐标,③当PN=PB时,取NB中点K,作KP⊥BN,交x轴于点P,易得△NOB∽△PKB,利用比例式求出PB,进而得到OP,即求出P点坐标 【详解】 解:(1)将A(﹣1,0)、B(3,0)代入y=ax2+bx+4, 得 解得a=,b=, ∴抛物线的解析式; (2) ∴抛物线对称轴为直线x=1, ∴D的横坐标为1, 由(1)可得C(0,4), ∵B(3,0), ∴直线BC: ∵DA=DB, △DAC的周长=AC+CD+AD=AC+CD+BD, 连接BC,与对称轴交于点D, 此时CD+BD最小, ∵AC为定值, ∴此时△DAC的周长, 当x=1时,y=﹣×1+4=, ∴D(1,); (3)作EH∥AB交BC于H,则∠FAB=∠FEH,∠FBA=∠FHE, ∴△ABF∽△EHF, ∵AF:FE=2:1, ∴, ∵AB=4, ∴EH=2, 设E(x,),则H(x﹣2,) ∵EH∥AB, ∴yE=yH, ∴= 解得x=1或x=2, y=或4, ∴E(1,)或(2,4); (4)∵A(﹣1,0)、B(3,0),C(0,4) ∴AB=4,OC=4, 点M运动到点A时,BM=AB=4, ∴BN=4, ∵△PBN是等腰三角形, ①BP=BC时, 若P在点B左侧,OP=PB﹣OB=4﹣3=1, ∴P1(﹣1,0), 若P在点B右侧,OP=OB+BP=4+3=7, ∴P2(7,0); ②当NB=NP时,作NH⊥x轴, △NHB∽△COB, ∴ ∴NH=OC==, BH=BC=, ∴PH=BH=, BP=, ∴OP=BP﹣OB=, ∴P3(﹣,0); ③当PN=PB时, 取NB中点K,作KP⊥BN,交x轴于点P, ∴△NOB∽△PKB, ∴ ∴PB=, ∴OP=OB﹣PB=3﹣= P4(,0) 综上,当△PBN是等腰三角形时,点P的坐标P1(﹣1,0)或P2(7,0)或P3(﹣,0)或P4(,0). 【点睛】 本题考查二次函数、平行线性质、相似三角形、等腰三角形性质及最短距离等知识点,综合程度比较高,对综合能力要求比较高. 第一问比较简单,考查待定系数法;第二问最短距离,找到D点是解题关键;第三问证明出相似是关键;第四问能够分情况讨论是解题关键 6.如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<5. (1)设四边形PQCB的面积为S,求S与t的关系式; (2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上? (3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由. 【答案】(1) S=﹣2(0<t<5); (2) ;(3)见解析. 【解析】 【分析】 (1)如图1,根据S=S△ABC-S△APQ,代入可得S与t的关系式; (2)设PM=x,则AM=2x,可得AP=x=4t,计算x的值,根据直角三角形30度角的性质可得AM=2PM=,根据AM=AO+OM,列方程可得t的值; (3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值. 【详解】 解:(1)如图1,∵四边形ABCD是菱形, ∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD, ∴∠OAB=30°, ∵AB=20, ∴OB=10,AO=10, 由题意得:AP=4t, ∴PQ=2t,AQ=2t, ∴S=S△ABC﹣S△APQ, =, = , =﹣2t2+100(0<t<5); (2)如图2,在Rt△APM中,AP=4t, ∵点Q关于O的对称点为M, ∴OM=OQ, 设PM=x,则AM=2x, ∴AP=x=4t, ∴x=, ∴AM=2PM=, ∵AM=AO+OM, ∴=10+10﹣2t, t=; 答:当t为秒时,点P、M、N在一直线上; (3)存在, 如图3,∵直线PN平分四边形APMN的面积, ∴S△APN=S△PMN, 过M作MG⊥PN于G, ∴ , ∴MG=AP, 易得△APH≌△MGH, ∴AH=HM=t, ∵AM=AO+OM, 同理可知:OM=OQ=10﹣2t, t=10=10﹣2t, t=. 答:当t为秒时,使得直线PN平分四边形APMN的面积. 【点睛】 考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系. 7.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3). (1)求抛物线y=x2+bx+c的表达式; (2)点D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求点D的坐标; (3)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值. 【答案】(1)y=x2﹣4x+3;(2)(2,﹣1);(3). 【解析】 试题分析:(1)利用待定系数法求抛物线解析式; (2)如图1,设D(2,y),利用两点间的距离公式得到BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,然后讨论:当BD为斜边时得到18+4+(y﹣3)2=1+y2;当CD为斜边时得到4+(y﹣3)2=1+y2+18,再分别解方程即可得到对应D的坐标; (3)先证明∠CEF=90°得到△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,则PE=PG,PF=PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,这样PE+EF=2PE+PF=﹣t2+4t,然后利用二次函数的性质解决问题. 试题解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:,解得:,∴抛物线y=x2+bx+c的表达式为y=x2﹣4x+3; (2)如图1,抛物线的对称轴为直线x=﹣=2,设D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此时D点坐标为(2,5); 当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此时D点坐标为(2,﹣1); (3)易得BC的解析式为y=﹣x+3.∵直线y=x+m与直线y=x平行,∴直线y=﹣x+3与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,PE=PG,PF=PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),∴PF=PH=t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=PG=﹣t2+t,∴PE+EF=PE+PE+PF=2PE+PF=﹣t2+3t+t=﹣t2+4t=﹣(t﹣2)2+4,当t=2时,PE+EF的最大值为4. 点睛:本题考查了二次函数的综合题.熟练掌握等腰直角三角形的性质、二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式. 8.如图1,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点C,抛物线经过A、C两点,与x轴的另一交点为点B. (1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点, ①连接BC、CD、BD,设BD交直线AC于点E,△CDE的面积为S1,△BCE的面积为S2.求:的最大值; ②如图2,是否存在点D,使得∠DCA=2∠BAC?若存在,直接写出点D的坐标,若不存在,说明理由. 【答案】(1);(2)①当时,的最大值是;②点D的坐标是 【解析】 【分析】 (1)根据题意得到A(-4,0),C(0,2)代入y=-x2+bx+c,于是得到结论; (2)①如图,令y=0,解方程得到x1=-4,x2=1,求得B(1,0),过D作DM⊥x轴于M,过B作BN⊥x轴交于AC于N,根据相似三角形的性质即可得到结论; ②根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点P,求得P(-,0),得到PA=PC=PB=,过D作x轴的平行线交y轴于R,交AC的延线于G,∠DCF=2∠BAC=∠DGC+∠CDG,解直角三角形即可得到结论. 【详解】 解:(1)根据题意得A(-4,0),C(0,2), ∵抛物线y=-x2+bx+c经过A.C两点, ∴, ∴, 抛物线解析式为: ; (2)①令, ∴ 解得: , ∴B(1,0) 过点D作轴交AC于M,过点B作轴交AC于点N, ∴∥ ∴ ∴ 设: ∴ ∵ ∴ ∴ ∴当时,的最大值是 ; ②∵A(-4,0),B(1,0),C(0,2), ∴AC=2,BC=,AB=5, ∴AC2+BC2=AB2, ∴△ABC是以∠ACB为直角的直角三角形, 取AB的中点P, ∴P(-,0), ∴PA=PC=PB=, ∴∠CPO=2∠BAC, ∴tan∠CPO=tan(2∠BAC)=, 过D作x轴的平行线交y轴于R,交AC的延长线于G,如图, ∴∠DCF=2∠BAC=∠DGC+∠CDG, ∴∠CDG=∠BAC, ∴tan∠CDG=tan∠BAC=, 即RC:DR=, 令D(a,-a2-a+2), ∴DR=-a,RC=-a2-a, ∴(-a2-a):(-a)=1:2, ∴a1=0(舍去),a2=-2, ∴xD=-2, ∴-a2-a+2=3, ∴点D的坐标是 【点睛】 本题是二次函数综合题,涉及待定系数法求函数的解析式,相似三角形的判定和性质,解直角三角形等知识点,正确的作出辅助线是解题的关键,难度较大. 9.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点. (1)求抛物线的解析式; (2)当点P运动到什么位置时,△PAB的面积有最大值? (3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由. 【答案】(1)抛物线解析式为y=﹣x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6). 【解析】 【分析】(1)利用待定系数法进行求解即可得; (2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN•AG+PN•BM=PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得; (3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案. 【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0), ∴设抛物线解析式为y=a(x﹣6)(x+2), 将点A(0,6)代入,得:﹣12a=6, 解得:a=﹣, 所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6; (2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G, 设直线AB解析式为y=kx+b, 将点A(0,6)、B(6,0)代入,得: , 解得:, 则直线AB解析式为y=﹣x+6, 设P(t,﹣t2+2t+6)其中0<t<6, 则N(t,﹣t+6), ∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t, ∴S△PAB=S△PAN+S△PBN =PN•AG+PN•BM =PN•(AG+BM) =PN•OB =×(﹣t2+3t)×6 =﹣t2+9t =﹣(t﹣3)2+, ∴当t=3时,△PAB的面积有最大值; (3)如图2, ∵PH⊥OB于H, ∴∠DHB=∠AOB=90°, ∴DH∥AO, ∵OA=OB=6, ∴∠BDH=∠BAO=45°, ∵PE∥x轴、PD⊥x轴, ∴∠DPE=90°, 若△PDE为等腰直角三角形, 则∠EDP=45°, ∴∠EDP与∠BDH互为对顶角,即点E与点A重合, 则当y=6时,﹣x2+2x+6=6, 解得:x=0(舍)或x=4, 即点P(4,6). 【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键. 10.在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处. (1)求这条抛物线的表达式; (2)求线段CD的长; (3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标. 【答案】(1)抛物线解析式为y=﹣x2+2x+;(2)线段CD的长为2;(3)M点的坐标为(0,)或(0,﹣). 【解析】 【分析】(1)利用待定系数法求抛物线解析式; (2)利用配方法得到y=﹣(x﹣2)2+,则根据二次函数的性质得到C点坐标和抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,﹣t),根据旋转性质得∠PDC=90°,DP=DC=t,则P(2+t,﹣t),然后把P(2+t,﹣t)代入y=﹣x2+2x+得到关于t的方程,从而解方程可得到CD的长; (3)P点坐标为(4,),D点坐标为(2,),利用抛物线的平移规律确定E点坐标为(2,﹣2),设M(0,m),当m>0时,利用梯形面积公式得到•(m++2)•2=8当m<0时,利用梯形面积公式得到•(﹣m++2)•2=8,然后分别解方程求出m即可得到对应的M点坐标. 【详解】(1)把A(﹣1,0)和点B(0,)代入y=﹣x2+bx+c得 ,解得, ∴抛物线解析式为y=﹣x2+2x+; (2)∵y=﹣(x﹣2)2+, ∴C(2,),抛物线的对称轴为直线x=2, 如图,设CD=t,则D(2,﹣t), ∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处, ∴∠PDC=90°,DP=DC=t, ∴P(2+t,﹣t), 把P(2+t,﹣t)代入y=﹣x2+2x+得﹣(2+t)2+2(2+t)+=﹣t, 整理得t2﹣2t=0,解得t1=0(舍去),t2=2, ∴线段CD的长为2; (3)P点坐标为(4,),D点坐标为(2,), ∵抛物线平移,使其顶点C(2,)移到原点O的位置, ∴抛物线向左平移2个单位,向下平移个单位, 而P点(4,)向左平移2个单位,向下平移个单位得到点E, ∴E点坐标为(2,﹣2), 设M(0,m), 当m>0时,•(m++2)•2=8,解得m=,此时M点坐标为(0,); 当m<0时,•(﹣m++2)•2=8,解得m=﹣,此时M点坐标为(0,﹣); 综上所述,M点的坐标为(0,)或(0,﹣). 【点睛】本题考查了二次函数的综合题,涉及到待定系数法、抛物线上点的坐标、旋转的性质、抛物线的平移等知识,综合性较强,正确添加辅助线、运用数形结合思想熟练相关知识是解题的关键. 11.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3). (1)求这个二次函数的表达式; (2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC. ①求线段PM的最大值; ②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标. 【答案】(1)二次函数的表达式y=x2﹣2x﹣3;(2)①PM最大=;②P(2,﹣3)或(3-,2﹣4). 【解析】 【分析】 (1)根据待定系数法,可得答案; (2)①根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案. 【详解】 (1)将A,B,C代入函数解析式, 得,解得, 这个二次函数的表达式y=x2﹣2x﹣3; (2)设BC的解析式为y=kx+b, 将B,C的坐标代入函数解析式,得 ,解得, BC的解析式为y=x﹣3, 设M(n,n﹣3),P(n,n2﹣2n﹣3), PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+, 当n=时,PM最大=; ②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2, 解得n1=0(不符合题意,舍),n2=2, n2﹣2n﹣3=-3, P(2,-3); 当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2, 解得n1=0(不符合题意,舍),n2=3+(不符合题意,舍),n3=3-, n2﹣2n﹣3=2-4, P(3-,2-4); 综上所述:P(2,﹣3)或(3-,2﹣4). 【点睛】 本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法. 12.如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E. (1)当a=﹣1时,求抛物线顶点D的坐标,OE等于多少; (2)OE的长是否与a值有关,说明你的理由; (3)设∠DEO=β,45°≤β≤60°,求a的取值范围; (4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围. 【答案】(1)(﹣1,4),3;(2)结论:OE的长与a值无关.理由见解析;(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1). 【解析】 【分析】 (1)求出直线CD的解析式即可解决问题; (2)利用参数a,求出直线CD的解析式求出点E坐标即可判断; (3)求出落在特殊情形下的a的值即可判断; (4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题. 【详解】 解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3, ∴顶点D(﹣1,4),C(0,3), ∴直线CD的解析式为y=﹣x+3, ∴E(3,0), ∴OE=3, (2)结论:OE的长与a值无关. 理由:∵y=ax2+2ax﹣3a, ∴C(0,﹣3a),D(﹣1,﹣4a), ∴直线CD的解析式为y=ax﹣3a, 当y=0时,x=3, ∴E(3,0), ∴OE=3, ∴OE的长与a值无关. (3)当β=45°时,OC=OE=3, ∴﹣3a=3, ∴a=﹣1, 当β=60°时,在Rt△OCE中,OC=OE=3, ∴﹣3a=3, ∴a=﹣, ∴45°≤β≤60°,a的取值范围为﹣≤a≤﹣1. (4)如图,作PM⊥对称轴于M,PN⊥AB于N. ∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°, ∴∠DPM=∠EPN, ∴△DPM≌△EPN, ∴PM=PN,PM=EN, ∵D(﹣1,﹣4a),E(3,0), ∴EN=4+n=3﹣m, ∴n=﹣m﹣1, 当顶点D在x轴上时,P(1,﹣2),此时m的值1, ∵抛物线的顶点在第二象限, ∴m<1. ∴n=﹣m﹣1(m<1). 故答案为:(1)(﹣1,4),3;(2)OE的长与a值无关;(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1). 【点睛】 本题是二次函数综合题,考查了二次函数的图象与性质。 13.已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=.如图①,动点M从点A出发,在矩形边上沿着的方向匀速运动(不包含点C).设动点M的运动时间为t(s),的面积为S(cm²),S与t的函数关系如图②所示: (1)直接写出动点M的运动速度为 ,BC的长度为 ; (2)如图③,动点M重新从点A出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N从点D出发,在矩形边上沿着的方向匀速运动,设动点N的运动速度为.已知两动点M、N经过时间在线段BC上相遇(不包含点C),动点M、N相遇后立即停止运动,记此时的面积为. ①求动点N运动速度的取值范围; ②试探究是否存在最大值.若存在,求出的最大值并确定运动速度时间的值;若不存在,请说明理由. 【答案】(1)2,10;(2)①;②当时,取最大值. 【解析】 【分析】 (1)由题意可知图像中0~2.5s时,M在AB上运动,求出速度,2.5~7.5s时,M在BC上运动,求出BC长度;(2)①分别求出在C点相遇和在B点相遇时的速度,取中间速度,注意C点相遇时的速度不能取等于;②过M点做MH⊥AC,则 得到S1,同时利用=15,得到S2,再得到关于x的二次函数,利用二次函数性质求得最大值 【详解】 (1)5÷2.5=2;(7.5-2.5)×2=10 (2)①解:在C点相遇得到方程 在B点相遇得到方程 ∴ 解得 ∵在边BC上相遇,且不包含C点 ∴ ②如下图 =15 过M点做MH⊥AC,则 ∴ ∴ = = 因为,所以当时,取最大值. 【点睛】 本题重点考查动点问题,二次函数的应用,求不规则图形的面积等知识点,第一问关键能够从图像中得到信息,第二问第一小问关键在理清楚运动过程,第二小问关键在能够用x表示出S1和S2 14.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM. (1)求抛物线的函数关系式; (2)判断△ABM的形状,并说明理由; (3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点. 【答案】(1)抛物线解析式为y=x2﹣1;(2)△ABM为直角三角形.理由见解析;(3)当m≤时,平移后的抛物线总有不动点. 【解析】 试题分析:(1)分别写出A、B的坐标,利用待定系数法求出抛物线的解析式即可; 根据OA=OM=1,AC=BC=3,分别得到∠MAC=45°,∠BAC=45°,得到∠BAM=90°,进而得到△ABM是直角三角形; (3)根据抛物线的平以后的顶点设其解析式为, ∵抛物线的不动点是抛物线与直线的交点,∴, 方程总有实数根,则≥0,得到m的取值范围即可 试题解析:解:(1)∵点A是直线与轴的交点,∴A点为(-1,0) ∵点B在直线上,且横坐标为2,∴B点为(2,3) ∵过点A、B的抛物线的顶点M在轴上,故设其解析式为: ∴,解得: ∴抛物线的解析式为. (2)△ABM是直角三角形,且∠BAM=90°.理由如下: 作BC⊥轴于点C,∵A(-1,0)、B(2,3)∴AC=BC=3,∴∠BAC=45°; 点M是抛物线的顶点,∴M点为(0,-1)∴OA=OM=1, ∵∠AOM=90°∴∠MAC=45°; ∴∠BAM=∠BAC+∠MAC=90°∴△ABM是直角三角形. (3)将抛物线的顶点平移至点(,),则其解析式为. ∵抛物线的不动点是抛物线与直线的交点,∴ 化简得: ∴== 当时,方程总有实数根,即平移后的抛物线总有不动点 ∴. 考点:二次函数的综合应用(待定系数法;直角三角形的判定;一元二次方程根的判别式) 15.抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C. (1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴; (2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标; (3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由. 【答案】(1)抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)点E的坐标为- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 2021 备战 中考 数学 二次 函数 大题培优 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文