Matlab课程设计报告--基于MATLAB有噪声语音信号处理.doc
《Matlab课程设计报告--基于MATLAB有噪声语音信号处理.doc》由会员分享,可在线阅读,更多相关《Matlab课程设计报告--基于MATLAB有噪声语音信号处理.doc(25页珍藏版)》请在咨信网上搜索。
Matlab课程设计报告 题目:基于MATLAB有噪声语音信号处理 系 (院): 计算机与信息工程学院 专 业: 通信工程 班 级: 10623102 指导教师: 学年学期: 2011 ~ 2012 学年 第 2 学期 简介: 我们通信工程专业在实践中经常碰到需要对已接收信号进行处理的情况,而滤波器设计在数字信号处理中占有极其重要的地位。本课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪语音信号进行时域、频域分析和滤波。通过理论推导得出相应结论,再利用MATLAB作为编程工具进行计算机实现。在设计实现的过程中,我们使用双线性变换法设计IIR数字滤波器,对模拟加噪语音信号进行低通滤波、高通滤波及带通滤波,并利用MATLAB作为辅助工具完成设计中的计算与图形的绘制。 1 绪论: 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。数字滤波器, 是数字信号处理中及其重要的一部分。本课题采用IIR滤波器对加噪声音信号进行处理。 IIR滤波器采用递归型结构,即结构上带有反馈环路。IIR滤波器运算结构通常由延时、乘以系数和相加等基本运算组成,可以组合成直接型、正准型、级联型、并联型四种结构形式,都具有反馈回路。同时,IIR数字滤波器在设计上可以借助成熟的模拟滤波器的成果,如巴特沃斯、契比雪夫和椭圆滤波器等,有现成的设计数据或图表可查,在设计一个IIR数字滤波器时,我们根据指标先写出模拟滤波器的公式,然后通过一定的变换,将模拟滤波器的公式转换成数字滤波器的公式。 2.原始语音信号采集与处理 2.1语音信号的采集 由于MATLAB只识别格式为.wav的声音文件,我们利用PC机上的声卡和WINDOWS操作系统进行数字信号的采集。启动录音机进行录音,以文件名“Orisound”保存入原程序所属的文件夹中。可以看到,文件存储器的后缀默认为.wav ,这是WINDOWS操作系统规定的声音文件存的标准。 程序流程图: 开始 用wavread读取语音信号,并进行采样,建立数据文件,并用plot画出数据文件时域波形图和频谱图 利用MATLAB中的随机函数产生噪声加入到语音信号中,模仿语音信号被污染,并对其进行频谱分析。 回放语音信号得出所设计滤波器在语音处理中的优劣并设计一个信号处理系统界面。 结束 运用数字信号处理理论设计IIR数字滤波器, 并对被噪声污染的语音信号进行滤波,分析滤波后信号的时域和频域。特征。 2.2语音信号的时频分析 利用MATLAB中的“wavread”命令来读入(采集)语音信号,将它赋值给某一向量。再对其进行采样,记住采样频率和采样点数。 对语音信号Orisound.wav进行采样其程序如下: [y,fs,nbits]=wavread (‘OriSound’); %把语音信号加载入MATLAB仿真软件平台中 画出语音信号的时域波形,再对语音信号进行频谱分析。在本次设计中,我们利用fft函数对语音信号进行快速傅里叶变换,就可以得到信号的频谱特性。程序如下: [y,fs,nbits]=wavread(‘Orisound’); %语音信号的采集 sound(y,fs,nbits); %语音信号的播放 n=length(y) ; Y=fft(y,n); %快速傅里叶变换 figure; subplot(2,1,1); plot(y); title(‘原始信号波形’,’fontweight’,’bold’); axis([ 78000 80000 -1 1]); grid; subplot(2,1,2); plot(abs(Y)); title(‘原始信号频谱’,’fontweight’,’bold’); axis([ 0 150000 0 4000]); grid; 程序结果如下图: 2.3语音信号加噪与频谱分析 利用MATLAB中的随机函数Randn(m,n)产生噪声加入到语音信号中,模仿语音信号被污染,并对其频谱分析。主要程序如下: [y,fs,nbits]=wavread('OriSound'); sound(y,fs,nbits); n = length (y) ; Noise=0.2*randn(n,2); s=y+Noise; sound(s); figure; subplot(2,1,1); plot(s); title('加噪语音信号的时域波形','fontweight','bold'); axis([ 78000 80000 -1 1]); grid; S=fft(s); subplot(2,1,2); plot(abs(S)); title('加噪语音信号的频域波形','fontweight','bold'); axis([ 0 150000 0 4000]); grid; 程序结果如下图: 3设计数字滤波器 3.1 数字滤波器设计的基本思路 数字滤波器的实现有两个关键步骤:一个从数字域到模拟域间的变换,这个变换实现了数字滤波器技术指标到模拟滤波器技术指标的转换,同样也实现了模拟滤波器系统函数到数字滤波器系统函数的转换;另一个是从模拟滤波器技术指标到满足该指标的模拟滤波器的设计。 3.2 模拟滤波器概述 用模拟—数字变换法设计IIR数字滤波器,首先必须设计一个模拟滤波器,它有许多不同的类型,主要有以下两种类型: (1)、巴特沃思(Botterworth简写BW)滤波器。BW滤波器是根据幅频特性在通带内具有最拼图特性而定义的滤波器,对一个N阶低通滤波器来说,所谓最平坦特性就是模拟函数的前(2N-1)阶导数在处都为零。BW滤波器的另一个特性是在通带和阻带内的幅频特性始终是频率的单调下降函数,且其模拟函数随阶次N 的增大而更接近于理想低通滤波器。 (2)、切比雪夫(Chbyshev简写为CB)滤波器。CB低通滤波器的模拟函数由切比雪夫多项式定义,且在通带内的幅频响应是波动的,在阻带则单调变化。 3.3设计IIR滤波器 目前IIR数字滤波器设计的最通用的方法是借助于模拟滤波器的设计方法。模拟滤波器设计已经有了一套相当成熟的方法,它不但有完整的设计公式,而且还有较为完整的图表供查询,因此,充分利用这些已有的资源将会给数字滤波器的设计带来很大方便。IIR数字滤波器的设计步骤是: (1)、按一定规则将给出的数字滤波器的技术指标转换为模拟低通滤波器的技术指标; (2)、根据转换后的技术指标设计模拟低通滤波器; (3)、再按一定规则将G(s)转换成H(z)。 若设计的数字滤波器是低通的,那么上述设计工作可以结束,若所设计的是高通,带通或带阻滤波器,那么还有步骤(4): (4)、将高通、带通、或带阻数字l不去的技术指标先转化为低通模拟滤波器的技术指标,然后按照上述步骤(2)设计出低通,再将转换为所需的H(z)。 利用模拟滤波器设计IIR数字低通滤波器的步骤: (1)确定数字低通滤波器的技术指标:通带边界频率、通带最大衰减,阻带截止频率、阻带最小衰减。 (2)将数字低通滤波器的技术指标转换成相应的模拟低通滤波器的技术指标。 (3)按照模拟低通滤波器的技术指标设计及过渡模拟低通滤波器。 (4)用双线性变换法,模拟滤波器系统函数转换成数字低通滤波器系统函数。 程序如下: Ft=8000; Fp=1000; Fs=1200; wp=2*pi*Fp/Ft; ws=2*pi*Fs/Ft; fp=2*Ft*tan(wp/2); fs=2*Fs*tan(wp/2); [n11,wn11]=buttord(wp,ws,1,50,’s’); [b11,a11]=butter(n11,wn11,’s’); [num11,den11]=bilinear(b11,a11,0.5); [h,w]=freqz(num11,den11); figure; plot(w*8000*0.5/pi,abs(h)); legend(‘IIR低通滤波器’,’Location’,’NorthWest’); grid; 程序结果如下图: 3.2验证所设计的滤波器: 为了验证滤波器的可使用性,我们用常用的sin函数来进行验证。其具体程序及运行结果如下: t=[0:1/1023:1]; s=sin(2*pi*t); N=length(s); y=s+0.5*rand(1,N); subplot(2,1,1); plot(y); title('加噪语音信号的时域波形','fontweight','bold'); S=fft(y); subplot(2,1,2); plot(abs(S)); title('加噪语音信号的频域波形','fontweight','bold'); Ft=8000; Fp=1000; Fs=1200; wp=2*pi*Fp/Ft; ws=2*pi*Fs/Ft; [n11,wn11]=buttord(wp,ws,1,50,'s'); %求低通滤波器的阶数和截止频率 [b11,a11]=butter(n11,wn11,'s'); %求S域的频率响应的参数 [num11,den11]=bilinear(b11,a11,0.5); %利用双线性变换实现频率响应S域到Z域的变换 z11=filter(num11,den11,s); sound(z11); m11=fft(z11); %求滤波后的信号 figure; subplot(2,2,1); plot(abs(S),'g'); title('滤波前信号的频谱','fontweight','bold'); grid; subplot(2,2,2); plot(abs(m11),'r'); title('滤波后信号的频谱','fontweight','bold'); grid; subplot(2,2,3); plot(y); title('滤波前信号的波形','fontweight','bold'); grid; subplot(2,2,4); plot(z11); title('滤波后的信号波形','fontweight','bold'); grid; 程序结果如下图: 由所得结果可知,所设计的滤波器符合要求。 4 滤波 用设计好的IIR低通滤波器对加噪的语音信号进行滤波,程序如下: [y,fs,nbits]=wavread (‘OriSound’); %IIR低通 n = length (y) ; %求出语音信号的长度 Noise=0.2*randn(n,2); %随机函数产生噪声 s=y+Noise; %语音信号加入噪声 S=fft(s); Ft=8000; Fp=1000; Fs=1200; wp=2*pi*Fp/Ft; ws=2*pi*Fs/Ft; [n11,wn11]=buttord(wp,ws,1,50,’s’);%求低通滤波器的阶数和截止频率 [b11,a11]=butter(n11,wn11,’s’); %求S域的频率响应的参数 [num11,den11]=bilinear(b11,a11,0.5); %利用双线性变换实现频率响应S域到Z域的变换 z11=filter(num11,den11,s); sound(z11); m11=fft(z11); %求滤波后的信号 figure; subplot(2,2,1); plot(abs(S),’g’); title(‘滤波前信号的频谱’,’fontweight’,’bold’); axis([ 0 150000 0 4000]); grid; subplot(2,2,2); plot(abs(m11),’r’); title(‘滤波后信号的频谱’,’fontweight’,’bold’); axis([ 0 150000 0 4000]); grid; subplot(2,2,3); plot(s); title(‘滤波前信号的波形’,’fontweight’,’bold’); axis([95000 100000 -1 1]); grid; subplot(2,2,4); plot(z11); title(‘滤波后的信号波形’,’fontweight’,’bold’); axis([95000 100000 -1 1]); grid; 程序结果如下图: 经过以上的加噪处理后,可在Matlab中用函数sound对声音进行回放。其调用格式:sound(y,Fs),sound(y)和sound(y,Fs,bits)。可以察觉滤波前后的声音有明显的变化。 5.创建GUI界面 总结 本次设计通过选择一个语音信号作为分析的对象,对其进行频谱分析;利用MATLAB中的随机函数产生噪声加入到语音信号中,模仿被噪声干扰的语音信号,并对其进行频谱分析;运用数字信号处理理论设计IIR数字滤波器, 并对被噪声污染的语音信号进行滤波,分析滤波后信号的时域和频域特征,回放语音信号。最后,设计一个信号处理系统界面返回。 我们四个人共同完成这个课程设计,分工是很重要的,首先我们确定了大致的方向,我们要做低通,带通以及高通三种滤波器,此外还有界面的设计,程序的整合,以及课程报告的编写等方面的内容,我们的具体分工如下: 声音信号的读入以及ppt的制作:翁淦泉1062310209 低通,带通,高通滤波器的设计及相关程序的编写:冯竹青1062310202,贺静文1062301203 最后整合及界面的设计:王雅青1062310208 课程报告:贺静文 参考文献 1、张志涌 杨祖樱 MATLAB教程R2011a 北京航空航天大学出版社 2、高西全,丁玉美.数字信号处理(第三版)[M].西安:西安电子科技大学出版社,2008.8 3、蒋瑞艳 振动,噪声处理系统[J]. 大连理工大学学院学报(自然科学版) 2002 4、马超 高世伦 基于MATLAB的噪声信号采集与分析系统研究[J]. 华中科技大学能源与动力工程学院院报 2004.5 5、李正周.MATLAB数字信号处理与应用[M].北京:清华大学出版社,2008 6、高萍,祖静.基于MATLAB小波去噪技术浅析[J].科技信息(学术版),2006(11)1-3. 7、刘智 基于MATLAB的机械噪声分析与处理[J]. 华中江师范学院学报(自然科学版) 2010(4) 附录 附录(I) 设计IIR数字滤波器 %=========================IIR低通滤波器======================= Ft=8000; Fp=1000; Fs=1200; wp=2*pi*Fp/Ft; ws=2*pi*Fs/Ft; fp=2*Ft*tan(wp/2); fs=2*Fs*tan(wp/2); [n11,wn11]=buttord(wp,ws,1,50,’s’); [b11,a11]=butter(n11,wn11,’s’); [num11,den11]=bilinear(b11,a11,0.5); [h,w]=freqz(num11,den11); figure; plot(w*8000*0.5/pi,abs(h)); legend(‘IIR低通滤波器’,’Location’,’NorthWest’); grid; 程序结果如下图: %======================IIR高通滤波器======================== Ft=8000; Fp=4000; Fs=3500; wp1=tan(pi*Fp/Ft); ws1=tan(pi*Fs/Ft); wp=1; ws=wp1*wp/ws1; [n13,wn13]=cheb1ord(wp,ws,1,50,’s’); [b13,a13]=cheby1(n13,1,wn13,’s’); [num,den]=lp2hp(b13,a13,wn13); [num13,den13]=bilinear(num,den,0.5); [h,w]=freqz(num13,den13); figure; plot(w*21000*0.5/pi,abs(h)); legend(‘IIR高通滤波器’,’Location’,’NorthWest’); axis([0 11000 0 1.5]); grid; 程序结果如下图: %======================IIR带通滤波器========================== Fp1=1200; Fp2=3000; Fs1=1000; Fs2=3200; Ft=8000; wp1=tan(pi*Fp1/Ft); wp2=tan(pi*Fp2/Ft); ws1=tan(pi*Fs1/Ft); ws2=tan(pi*Fs2/Ft); w=wp1*wp2/ws2; bw=wp2-wp1; %有效通带频率 wp=1; ws=(wp1*wp2-w.^2)/(bw*w); [n12,wn12]=buttord(wp,ws,1,50,’s’); [b12,a12]=butter(n12,wn12,’s’); [num2,den2]=lp2bp(b12,a12,sqrt(wp1*wp2),bw); [num12,den12]=bilinear(num2,den2,0.5); [h,w]=freqz(num12,den12); figure; plot(w*8000*0.5/pi,abs(h)); axis([0 4500 0 1.5]); legend(‘IIR带通滤波器’,’Location’,’NorthWest’); grid; 程序结果如下图: 附录(II)比较滤波前后语音信号的波形及频谱 % ======================双线性变换法======================= %*************************低通滤波器************************ [y,fs,nbits]=wavread (‘OriSound’); %IIR低通 n = length (y) ; %求出语音信号的长度 Noise=0.2*randn(n,2); %随机函数产生噪声 s=y+Noise; %语音信号加入噪声 S=fft(s); Ft=8000; Fp=1000; Fs=1200; wp=2*pi*Fp/Ft; ws=2*pi*Fs/Ft; [n11,wn11]=buttord(wp,ws,1,50,’s’);%求低通滤波器的阶数和截止频率 [b11,a11]=butter(n11,wn11,’s’); %求S域的频率响应的参数 [num11,den11]=bilinear(b11,a11,0.5); %利用双线性变换实现频率响应S域到Z域的变换 z11=filter(num11,den11,s); sound(z11); m11=fft(z11); %求滤波后的信号 figure; subplot(2,2,1); plot(abs(S),’g’); title(‘滤波前信号的频谱’,’fontweight’,’bold’); axis([ 0 150000 0 4000]); grid; subplot(2,2,2); plot(abs(m11),’r’); title(‘滤波后信号的频谱’,’fontweight’,’bold’); axis([ 0 150000 0 4000]); grid; subplot(2,2,3); plot(s); title(‘滤波前信号的波形’,’fontweight’,’bold’); axis([95000 100000 -1 1]); grid; subplot(2,2,4); plot(z11); title(‘滤波后的信号波形’,’fontweight’,’bold’); axis([95000 100000 -1 1]); grid; 程序结果如下图: 附II-1 双线性低通滤波器比较 %**********************高通滤波器***************************** [y,fs,nbits]=wavread (‘OriSound’); %IIR高通 n = length (y) ; %求出语音信号的长度 Noise=0.2*randn(n,2); %随机函数产生噪声 s=y+Noise; %语音信号加入噪声 S=fft(s); %傅里叶变换 Fp1=1200; Fs1=1000; Ft=8000; wp1=tan(pi*Fp1/Ft); ws1=tan(pi*Fs1/Ft); wp=1; ws=wp1*wp/ws1; [n13,wn13]=cheb1ord(wp,ws,1,50,’s’); %求模拟的低通滤波器阶数和截止频率 [b13,a13]=cheby1(n13,1,wn13,’s’); %求S域的频率响应的参数 [num,den]=lp2hp(b13,a13,wn13); %将S域低通参数转为高通的 [num13,den13]=bilinear(num,den,0.5); %利用双线性变换实现频率响应S域到Z域转换 z13=filter(num13,den13,s); sound(z13); m13=fft(z13); %求滤波后的信号 figure; subplot(2,2,1); plot(abs(S),’g’); title(‘滤波前信号的频谱’,’fontweight’,’bold’); axis([0 150000 0 4000]); grid; subplot(2,2,2); plot(abs(m13),’r’); title(‘滤波后信号的频谱’,’fontweight’,’bold’); axis([0 150000 0 4000]); grid; subplot(2,2,3); plot(s); title(‘滤波前信号的波形’,’fontweight’,’bold’); axis([95000 100000 -1 1]); grid; subplot(2,2,4); plot(z13); title(‘滤波后的信号波形’,’fontweight’,’bold’); axis([95000 100000 -1 1]); grid; 程序结果如下图: 附II-2 双线性高通滤波器比较 %**********************带通滤波器***************************** [y,fs,nbits]=wavread (‘OriSound’); %IIR带通 n = length (y) ; %求出语音信号的长度 Noise=0.2*randn(n,2); %随机函数产生噪声 s=y+Noise; %语音信号加入噪声 S=fft(s); %傅里叶变换 Ft=8000; Fp=1000; Fs=1200; wp=2*Fp/Ft; ws=2*Fs/Ft; rp=1; rs=50; p=1-10.^(-rp/20); %通带阻带波纹 q=10.^(-rs/20); fpts=[wp ws]; mag=[1 0]; dev=[p q]; [n21,wn21,beta,ftype]=kaiserord(fpts,mag,dev);%由kaiserord求滤波器的阶数和截止频率 b21=fir1(n21,wn21,kaiser(n21+1,beta)); %由fir1设计滤波器 z21=fftfilt(b21,s); sound(z21); m21=fft(z21); %求滤波后的信号 figure(4); subplot(2,2,1); plot(abs(S),’g’); title(‘滤波前信号的频谱’,’fontweight’,’bold’); axis([0 150000 0 4000]); grid; subplot(2,2,2); plot(abs(m21),’r’); title(‘滤波后信号的频谱’,’fontweight’,’bold’); axis([0 150000 0 4000]); grid; subplot(2,2,3); plot(s); title(‘滤波前信号的波形’,’fontweight’,’bold’); axis([95000 100000 -1 1]); grid; subplot(2,2,4); plot(z21); title(‘滤波后的信号波形’,’fontweight’,’bold’); axis([95000 100000 -1 1]); grid; 程序结果如下图: 附II-3 双线性带通滤波器比较 1. 基于C8051F单片机直流电动机反馈控制系统的设计与研究 2. 基于单片机的嵌入式Web服务器的研究 3. MOTOROLA单片机MC68HC(8)05PV8/A内嵌EEPROM的工艺和制程方法及对良率的影响研究 4. 基于模糊控制的电阻钎焊单片机温度控制系统的研制 5. 基于MCS-51系列单片机的通用控制模块的研究 6. 基于单片机实现的供暖系统最佳启停自校正(STR)调节器 7. 单片机控制的二级倒立摆系统的研究 8. 基于增强型51系列单片机的TCP/IP协议栈的实现 9. 基于单片机的蓄电池自动监测系统 10. 基于32位嵌入式单片机系统的图像采集与处理技术的研究 11. 基于单片机的作物营养诊断专家系统的研究 12. 基于单片机的交流伺服电机运动控制系统研究与开发 13. 基于单片机的泵管内壁硬度测试仪的研制 14. 基于单片机的自动找平控制系统研究 15. 基于C8051F040单片机的嵌入式系统开发 16. 基于单片机的液压动力系统状态监测仪开发 17. 模糊Smith智能控制方法的研究及其单片机实现 18. 一种基于单片机的轴快流CO〈,2〉激光器的手持控制面板的研制 19. 基于双单片机冲床数控系统的研究 20. 基于CYGNAL单片机的在线间歇式浊度仪的研制 21. 基于单片机的喷油泵试验台控制器的研制 22. 基于单片机的软起动器的研究和设计 23. 基于单片机控制的高速快走丝电火花线切割机床短循环走丝方式研究 24. 基于单片机的机电产品控制系统开发 25. 基于PIC单片机的智能手机充电器 26. 基于单片机的实时内核设计及其应用研究 27. 基于单片机的远程抄表系统的设计与研究 28. 基于单片机的烟气二氧化硫浓度检测仪的研制 29. 基于微型光谱仪的单片机系统 30. 单片机系统软件构件开发的技术研究 31. 基于单片机的液体点滴速度自动检测仪的研制 32. 基于单片机系统的多功能温度测量仪的研制 33. 基于PIC单片机的电能采集终端的设计和应用 34. 基于单片机的光纤光栅解调仪的研制 35. 气压式线性摩擦焊机单片机控制系统的研制 36. 基于单片机的数字磁通门传感器 37. 基于单片机的旋转变压器-数字转换器的研究 38. 基于单片机的光纤Bragg光栅解调系统的研究 39. 单片机控制的便携式多功能乳腺治疗仪的研制 40. 基于C8051F020单片机的多生理信号检测仪 41. 基于单片机的电机运动控制系统设计 42. Pico专用单片机核的可测性设计研究 43. 基于MCS-51单片机的热量计 44. 基于双单片机的智能遥测微型气象站 45. MCS-51单片机构建机器人的实践研究 46. 基于单片机的轮轨力检测 47. 基于单片机的GPS定位仪的研究与实现 48. 基于单片机的电液伺服控制系统 49. 用于单片机系统的MMC卡文件系统研制 50. 基于单片机的时控和计数系统性能优化的研究 51. 基于单片机和CPLD的粗光栅位移测量系统研究 52. 单片机控制的后备式方波UPS 53. 提升高职学生单片机应用能力的探究 54. 基于单片机控制的自动低频减载装置研究 55. 基于单片机控制的水下焊接电源的研究 56. 基于单片机的多通道数据采集系统 57. 基于uPSD3234单片机的氚表面污染测量仪的研制 58. 基于单片机的红外测油仪的研究 59. 96系列单片机仿真器研究与设计 60. 基于单片机的单晶金刚石刀具刃磨设备的数控改造 61. 基于单片机的温度智能控制系统的设计与实现 62. 基于MSP430单片机的电梯门机控制器的研制 63. 基于单片机的气体测漏仪的研究 64. 基于三菱M16C/6N系列单片机的CAN/USB协议转换器 65. 基于单片机和DSP的变压器油色谱在线监测技术研究 66. 基于单片机的膛壁温度报警系统设计 67. 基于AVR单片机的低压无功补偿控制器的设计 68. 基于单片机船舶电力推进电机监测系统 69. 基于单片机网络的振动信号的采集系统 70. 基于单片机的大容量数据存储技术的应用研究 71. 基于单片机的叠图机研究与教学方法实践 72. 基于单片机嵌入式Web服务器技术的研究及实现 73. 基于AT89S52单片机的通用数据采集系统 74. 基于单片机的多道脉冲幅度分析仪研究 75. 机器人旋转电弧传感角焊缝跟踪单片机控制系统 76. 基于单片机的控制系统在PLC虚拟教学实验中的应用研究 77. 基于单片机系统的网络通信研究与应用 78. 基于PIC16F877单片机的莫尔斯码自动译码系统设计与研究 79. 基于单片机的模糊控制器在工业电阻炉上的应用研究 80. 基于双单片机冲床数控系统的研究与开发 81. 基于Cygnal单片机的μC/OS-Ⅱ的研究 82. 基于单片机的一体化智能差示扫描量热仪系统研究 83. 基于TCP/IP协议的单片机与Internet互联的研究与实现 84. 变频调速液压电梯单片机控制器的研究 85. 基于单片机γ-免疫计数器自动换样功能的研究与实现 86. 基于单片机的倒立摆控制系统设计与实现 87. 单片机嵌入式以太网防盗报警系统 88. 基于51单片机的嵌入式Internet系统的设计与实现 89. 单片机监测系统在挤压机上的应用 90. MSP430单片机在智能水表系统上的研究与应用 91. 基于单片机的嵌入式系统中TCP/IP协议栈的实现与应用 92. 单片机在高楼恒压供水系统中的应用 93. 基于ATmega16单片机的流量控制器的开发 94. 基于MSP430单片机的远程抄表系统及智能网络水表的设计 95. 基于MSP430单片机具有数据存储与回放功能的嵌入式电子血压计的设计 96. 基于单片机的氨分解率检测系统的研究与开发 97. 锅炉的单片机控制系统 98. 基于单片机控制的电磁振动式播种控制系统的设计 99. 基于单片机技术的WDR-01型聚氨酯导热系数测试仪的研制 100. 一种RISC结构8位单片机的设计与实现 101. 基于单片机的公寓用电智能管理系统设计 102. 基于单片机的温度测控系统在温室大棚中的设计与实现 103. 基于MSP430单片机的数字化超声电源的研制 104. 基于ADμC841单片机的防爆软起动综合控制器的研究 105. 基于单片机控制的井下低爆综合保护系统的设计 106. 基于单片机的空调器故障诊断系统的设计研究 107. 单片机实现的寻呼机编码器 108. 单片机实现的鲁棒MRACS及其在液压系统中的应用研究 109. 自适应控制的单片机实现方法及基上隅角瓦斯积聚处理中的应用研究 110. 基于单片机的锅炉智能控制器的设计与研究 111. 超精密机床床身隔振的单片机主动控制 112. PIC单片机在空调中的应用 113. 单片机控制力矩加载控制系统的研究 项目论证,项目可行性研究报告,可行性研究报告,项目推广,项目研究报告,项目设计,项目建议书,项目可研报告,本文档支持完整下载,支持任意编辑!选择我们,选择成功! 项目论证,项目可行性研究报告,可行性研究报告,项目推广,项目研究报告,项目设计,项目建议书,项目可研报告,本文档支持完整下载,支持任意编辑!选择我们,选择成功! 单片机论文,毕业设计,毕业论文,单片机设计,硕士论文,研究生论文,单片机研究论文,单片机设计论文,优秀毕业论文,毕业论文设计,毕业过关论文,毕业设计,毕业设计说明,毕业论文,单片机论文,基于单片机论文,毕业论文终稿,毕业论文初稿,本文档支持完整下载,支持任意编辑!本文档全网独一无二,放心使用,下载这篇文档,定会成功!- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Matlab 课程设计 报告 基于 噪声 语音 信号 处理
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文