人教版初二数学上册期末试卷附答案.doc
《人教版初二数学上册期末试卷附答案.doc》由会员分享,可在线阅读,更多相关《人教版初二数学上册期末试卷附答案.doc(21页珍藏版)》请在咨信网上搜索。
人教版初二数学上册期末试卷附答案 一、选择题 1.下列四个图形中,是中心对称图形且不是轴对称图形的为( ) A. B. C. D. 2.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.数0.00005用科学记数法表示为( ) A. B. C. D. 3.下列运算中,正确的是( ) A. B. C. D. 4.要使分式有意义,则的取值应满足( ) A. B. C. D. 5.下列各式中,从左到右因式分解正确的是( ) A. B. C. D. 6.分式﹣可变形为( ) A.﹣ B.﹣ C. D. 7.如图,,在线段,上,且,再添加条件( ),不能得到 A. B. C. D. 8.关于x的分式方程的解为正数,则m的取值范围是( ) A.m>2 B.m<2 C.m<2且m≠0 D.m≠0 9.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是( ) A. B. C. D. 10.如图,D为的外角平分线上一点并且满足,过D作于E,交BA的延长线于F,则下列结论: ①,②,③,④,其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个 二、填空题 11.若分式的值为0,则x的值是______. 12.在直角坐标系中,点关于y轴对称点的坐标是___________. 13.如果如果mn=2,mn=-4,那么 的值为________ 14.如果,那么我们规定,例如:因为,所以.若,,,则________. 15.如图,的面积为24,的长为8,平分,E、F分别是和上的动点,则的最小值为____________. 16.若9x2+kx+是一个完全平方式.则k=_____. 17.已知一个n边形的内角和等于,则n=_____ 18.如图,在△ABC中,厘米,厘米,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,当一个点停止运动时,另一个点也随之停止运动,当点Q的运动速度为______时,能够在某一时刻使与△CQP全等. 三、解答题 19.因式分解: (1); (2). 20.解下列方程: (1). (2) 21.如图,AC和BD相交于点O,OA=OC,DC∥AB.求证DC=AB. 22.如图,在中,,的外角的平分线BE交AC的延长线于点E,点F为AC延长线上的一点,连接DF. (1)若,求的度数; (2)在(1)的条件下,若,求证:; (3)若,探究、有怎样的数量关系,直接写出答案,不用证明. 23.观察下列方程及解的特征: ①的解为:;②的解为:,;③的解为:,;…… 解答下列问题: (1)请猜想,方程的解为_____; (2)请猜想,方程_______的解为,; (3)解关于的分式方程. 24.教科书中这样写道:“我们把多项式及叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等问题. 例如:分解因式 求代数式的最小值,. 当时,有最小值,最小值是, 根据阅读材料用配方法解决下列问题: (1)分解因式:__________. (2)当x为何值时,多项式有最大值?并求出这个最大值. (3)若,求出a,b的值. 25.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明. (1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程; (2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明). 26.如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b2﹣86+16=0. (1)求a,b的值; (2)如图1,c为y轴负半轴上一点,连CA,过点C作CD⊥CA,使CD=CA,连BD.求证:∠CBD=45°; (3)如图2,若有一等腰Rt△BMN,∠BMN=90°,连AN,取AN中点P,连PM、PO.试探究PM和PO的关系. 【参考答案】 一、选择题 2.D 解析:D 【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,据此逐项判断即可. 【详解】解:A、是中心对称图形,也是轴对称图形,故此选项不符合题意; B、是中心对称图形,也是轴对称图形,故此选项不符合题意; C、是中心对称图形,也是轴对称图形,故此选项不符合题意; D、是中心对称图形,不是轴对称图形,故此选项符合题意, 故选:D. 【点睛】本题考查中心对称图形和轴对称图形,理解定义,找准对称中心或对称轴是解答的关键. 3.A 解析:A 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数. 【详解】0.00005=5×10-5. 故选:A. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值. 4.C 解析:C 【分析】根据合并同类项的法则,同底数幂相乘,同底数幂的除法法则,积的乘方法则分别进行计算即可. 【详解】A.,故A错误; B.,故B错误; C.,故C正确; D.,故D错误. 故选:C. 【点睛】此题主要考查了合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方,解题的关键是掌握各计算法则. 5.D 解析:D 【分析】根据分式的分母不能为0解答即可. 【详解】由题意可知, ∴ 故选D 【点睛】本题考查分式有意义的条件.掌握分式的分母不能为0是解题关键. 6.D 解析:D 【分析】直接利用公式法以及提取公因式法分解因式进而得出答案. 【详解】解:A、,故原式分解因式错误,不合题意; B、故原式分解因式错误,不合题意; C、,不是因式分解,不合题意; D.,正确. 故选:D. 【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确运用公式是解题关键. 7.D 解析:D 【分析】直接利用分式的基本性质将分式变形得出答案. 【详解】解:分式﹣. 故选:D. 【点睛】此题主要考查了分式的基本性质,正确掌握分式的性质是解题关键. 8.D 解析:D 【分析】根据全等三角形的判定定理依次分析判断. 【详解】解:由题意知,AD=AE,∠A=∠A, A、当∠B=∠C时,可利用AAS证明,故正确; B、当时,可得∠ADC=∠AEB,则可利用AAS证明,故正确; C、当AB=AC时,可利用SAS证明,故正确; D、当BE=CD时,根据SSA不能,故错误; 故选:D. 【点睛】此题考查了全等三角形的判定定理,熟记全等三角形的判定定理是解题的关键. 9.C 解析:C 【分析】根据分式方程的解为正数和分式方程有意义,得出x的取值范围,再解分式方程,解得,代入x的取值范围即可算出m的取值范围. 【详解】解:∵关于x的分式方程的解为正数, ∴且 ∴且 去分母得: 化简得: ∴且 解得:且, 故选:C. 【点睛】本题考查了根据分式方程的解,求参数的取值范围,找出x的取值范围是本题的关键. 10.C 解析:C 【分析】根据阴影部分的面积的不同表示方法,即可求出答案. 【详解】解:如图所示,根据图中的阴影部分面积可以表示为:(a-b)2 图中的阴影部分面积也可以表示为:a2-2ab+b2 可得:(a-b)2=a2-2ab+b2 故选:C 【点睛】本题考查了完全平方公式的几何背景,解决问题的关键是能用算式表示出阴影部分的面积 11.D 解析:D 【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再利用“HL”可证明Rt△CDE和Rt△BDF全等,根据全等三角形对应边相等可得CE=AF,利用“HL”证明Rt△ADE和Rt△ADF全等,根据全等三角形对应边相等可得AE=AF,然后求出CE=AB+AE;根据全等三角形对应角相等可得∠DBF=∠DCE,根据三角形内角和是180°和∠AOB=∠COD(设AC交BD于点O),得到∠BDC=∠BAC;根据三角形内角和是180°易得∠DAE=∠CBD,再根据角平分线可得∠DAE=∠DAF,然后求出∠DAF=∠CBD. 【详解】∵AD平分∠CAF,DE⊥AC,DF⊥AB ∴DE=DF 在Rt△CDE和Rt△BDF中 ∴Rt△CDE≌Rt△BDF(HL),故①正确; ∴CE=AF 在Rt△ADE和Rt△ADF中 ∴Rt△ADE≌Rt△ADF(HL) ∴AE=AF ∴CE=AB+AF=AB+AE,故②正确; ∵Rt△CDE≌Rt△BDF ∴∠DBF=∠DCE ∵∠AOB=∠COD(设AC交BD于点O) ∴∠BDC=∠BAC,故③正确; ∵∠BAC+∠ABC+∠ACB=180° ∠BDC+∠DBC+∠DCB=180° ∠DBF=∠DCE ∴∠DAE=∠CBD, ∵∠DAE=∠DAF, ∴∠DAF=∠CBD,故④正确; 综上所述,正确的结论有①②③④. 故选D 【点睛】本题考查了角平分线上的点到角的两边距离相等的性质、全等三角形的判定与性质,熟记性质并准确识图判断出全等的三角形是解题的关键,难点在于需要二次证明三角形全等. 二、填空题 12.-3 【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题. 【详解】解:由题意可得x+3=0且x-2≠0, 解得x=-3. 故答案为:-3. 【点睛】本题考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题. 13.(5,6) 【分析】当两点关于y轴对称时,它们的纵坐标相等,横坐标互为相反数; 【详解】解:点M(-5,6)关于y轴的对称点坐标是(5,6); 故答案为:(5,6). 【点睛】本题考查了轴对称的性质,坐标系中点的特征;掌握对称的性质是解题关键. 14.-3 【分析】先化简分式,然后将m -n=2,mn=-4的值代入计算即可. 【详解】, ∵m -n=2,mn=-4, ∴原式=. 故答案为-3. 【点睛】本题考查了完全平方公式,对完全平方公式的灵活应用变形整理是解此题的关键. 15. 【分析】由新规定的运算可得,,,再将转化为后,再代入求值即可. 【详解】由于,,,根据新规定的运算可得, ,,, , 故答案为:. 【点睛】本题考查幂的乘方,同底数幂的除法,掌握幂的乘方和同底数幂的除法的计算方法是正确计算的前提,理解新规定运算的意义是解决问题的关键. 16.6 【分析】在上取点,使,过点C作,垂足为H,连接、,交于,得出.根据E、F分别是和上的动点,三角形三边的关系和垂线段最短得出,求出的长即可得出的最小值. 【详解】解:如图所示,在上取点,使,过 解析:6 【分析】在上取点,使,过点C作,垂足为H,连接、,交于,得出.根据E、F分别是和上的动点,三角形三边的关系和垂线段最短得出,求出的长即可得出的最小值. 【详解】解:如图所示,在上取点,使,过点C作,垂足为H,连接、,交于,. ∵的面积为24,的长为8, ∴, ∴, ∵平分, ∴ 又∵,, ∴≌(SAS), ∴, ∴, ∵E、F分别是和上的动点, ∴, ∴ ∴当C、E、共线且点与点H重合时,即,这时的值最小, ∴最小值为6. 故答案为:6. 【点睛】本题考查轴对称—最短路线问题.灵活应用角平分线性质、三角形三边的关系、垂线段最短,将所求最小值转化为求的长是解题的关键. 17.±3 【分析】利用完全平方公式的结构特征判断即可确定出k的值. 【详解】解:有题意知9x2+kx+=(3x=9x2 故k= 故答案为±3. 【点睛】本题考查了完全平方式,熟练掌握完全平方公 解析:±3 【分析】利用完全平方公式的结构特征判断即可确定出k的值. 【详解】解:有题意知9x2+kx+=(3x=9x2 故k= 故答案为±3. 【点睛】本题考查了完全平方式,熟练掌握完全平方公式是解本题的关键. 18.5 【分析】已知n边形的内角和为540°,根据多边形内角和的公式易求解. 【详解】解:依题意有 (n﹣2)•180°=540°, 解得n=5. 故答案为:5. 【点睛】此题主要考查的是多 解析:5 【分析】已知n边形的内角和为540°,根据多边形内角和的公式易求解. 【详解】解:依题意有 (n﹣2)•180°=540°, 解得n=5. 故答案为:5. 【点睛】此题主要考查的是多边形的内角和公式,熟记多边形的内角和公式是解题的关键. 19.2或厘米/秒 【分析】根据等边对等角可得∠B=∠C,然后表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD与CQ是对应边两种情况讨论求解即可. 【详解】解: 解析:2或厘米/秒 【分析】根据等边对等角可得∠B=∠C,然后表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD与CQ是对应边两种情况讨论求解即可. 【详解】解:∵AB=10cm,BC=8cm,点D为AB的中点, ∴BD=×10=5cm, 设点P、Q的运动时间为t,则BP=2t, PC=(8﹣2t)cm ①当△BPD≌△CQP时,即BD=PC时,8﹣2t=5, 解得:t=1.5, 则BP=CQ=2t=3, 故点Q的运动速度为:3÷1.5=2(厘米/秒); ②当BPD≌△CPQ,即BP=PC,CQ=BD=5时, ∵BC=8cm, ∴BP=PC=4cm, ∴t=4÷2=2(秒), 故点Q的运动速度为(厘米/秒); 故答案为2或厘米/秒. 【点睛】本题主要考查了全等三角形的性质,解题的关键在于能够利用分类讨论的思想求解. 三、解答题 20.(1);(2) 【分析】(1)先提公因式n,再利用平方差公式分解; (2)先提取公因式b,再根据完全平方公式分解因式. 【详解】解:(1)原式, ; 解析:(1);(2) 【分析】(1)先提公因式n,再利用平方差公式分解; (2)先提取公因式b,再根据完全平方公式分解因式. 【详解】解:(1)原式, ; (2)原式 . 【点睛】本题考查多项式的分解因式,掌握因式分解的方法:提公因式法、平方差公式、完全平方公式,根据多项式的特点选用恰当的因式分解的方法是解题的关键. 21.(1)x= (2)无解 【分析】(1)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验; (2)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验. (1) 整理方程 解析:(1)x= (2)无解 【分析】(1)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验; (2)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验. (1) 整理方程得: 去分母:3-x=x-2, 2x=5, ∴x=. 经检验,x=是原方程的解. ∴原解方程的解为x=. (2) 两边都乘以(x2-1)得:(x+1)2-4=x2-1, x2+2x+1-4=x2-1, 2x=2, ∴x=1. 检验:当x=1时,x2-1=0, ∴x=1是原方程的增根. ∴原方程无解. 【点睛】本题考查了解分式方程,找到最简公分母,将分式方程转化为整式方程是解题的关键. 22.见解析 【分析】由DC∥AB得∠D=∠B,再利用AAS即可证明△COD≌△AOB,即可得出结论. 【详解】证明:∵DC∥AB, ∴∠D=∠B, 在△COD与△AOB中, , ∴△COD≌ 解析:见解析 【分析】由DC∥AB得∠D=∠B,再利用AAS即可证明△COD≌△AOB,即可得出结论. 【详解】证明:∵DC∥AB, ∴∠D=∠B, 在△COD与△AOB中, , ∴△COD≌△AOB(AAS), ∴DC=AB. 【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键. 23.(1)65° (2)见解析 (3) 【分析】(1)根据直角三角形两锐角互余求出,再根据邻补角得出,最后根据角平分线定义得出结论; (2)根据三角形外角性质可得出,再由同位角相等,两直线平行可 解析:(1)65° (2)见解析 (3) 【分析】(1)根据直角三角形两锐角互余求出,再根据邻补角得出,最后根据角平分线定义得出结论; (2)根据三角形外角性质可得出,再由同位角相等,两直线平行可证明结论; (3)由得,再结合外角的性质得,再证明即可得到结论. (1) ∵在中,,, ∴, ∴ ∵BE是∠CBD的平分线, ∴; (2) ∵,, ∴. 又∵, ∴, ∴. (3) 若,则 ∵∠CBD=∠A+∠ACB=∠A+90° ∴ ∵ ∴ ∴ 整理得, 【点睛】本题考查了三角形内角和定理,三角形外角的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键. 24.(1), (2) (3), 【分析】(1)观察阅读材料中的方程解的规律,归纳总结得到结果; (2)仿照阅读材料中的方程解的规律,归纳总结得到结果; (3)先把原方程变形后,利用得出的规律即 解析:(1), (2) (3), 【分析】(1)观察阅读材料中的方程解的规律,归纳总结得到结果; (2)仿照阅读材料中的方程解的规律,归纳总结得到结果; (3)先把原方程变形后,利用得出的规律即可解答. (1) 解:猜想方程, 即方程的解是,. 故答案为:,; (2) 解:猜想方程关于的方程的解为,. 故答案为:; (3) 解:, 即, 即, 即, 即, 可得或, 解得:,. 经检验,,是原分式方程的根. 【点睛】本题考查了解分式方程,分式方程的解,理解阅读材料中的方程解的规律是解题的关键. 25.(1)(x+1)(x-5);(2)x=-1,最大值为5;(3)a=2,b=1 【分析】(1)根据题目中的例子,可以将题目中的式子因式分解; (2)根据题目中的例子,先将所求式子变形,然后即可得到 解析:(1)(x+1)(x-5);(2)x=-1,最大值为5;(3)a=2,b=1 【分析】(1)根据题目中的例子,可以将题目中的式子因式分解; (2)根据题目中的例子,先将所求式子变形,然后即可得到当x为何值时,所求式子取得最大值,并求出这个最大值; (3)将题目中的式子化为完全平方式的形式,然后根据非负数的性质,即可得到a、b的值. 【详解】解:(1)x2-4x-5 =(x-2)2-9 =(x-2+3)(x-2-3) =(x+1)(x-5), 故答案为:(x+1)(x-5); (2)∵-2x2-4x+3=-2(x+1)2+5, ∴当x=-1时,多项式-2x-4x+3有最大值,这个最大值是5; (3)∵, ∴, ∴, ∴, ∴a-2b=0,b-1=0, ∴a=2,b=1. 【点睛】本题考查非负数的性质、因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法和非负数的性质解答. 26.(1)过程见解析;(2)MN= NC﹣BM. 【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠B 解析:(1)过程见解析;(2)MN= NC﹣BM. 【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN =60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC. (2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论. 【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE. ∵△BDC为等腰三角形,△ABC为等边三角形, ∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°, 又BD=DC,且∠BDC=120°, ∴∠DBC=∠DCB=30° ∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°, ∴∠MBD=∠ECD=90°, 在△MBD与△ECD中, ∵ , ∴△MBD≌△ECD(SAS), ∴MD=DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°, 即:∠MDN =∠NDE=60°, 在△DMN与△DEN中, ∵ , ∴△DMN≌△DEN(SAS), ∴MN=NE=CE+NC=BM+NC. (2)如图②中,结论:MN=NC﹣BM. 理由:在CA上截取CE=BM. ∵△ABC是正三角形, ∴∠ACB=∠ABC=60°, 又∵BD=CD,∠BDC=120°, ∴∠BCD=∠CBD=30°, ∴∠MBD=∠DCE=90°, 在△BMD和△CED中 ∵ , ∴△BMD≌△CED(SAS), ∴DM= DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°, 即:∠MDN =∠NDE=60°, 在△MDN和△EDN中 ∵ , ∴△MDN≌△EDN(SAS), ∴MN =NE=NC﹣CE=NC﹣BM. 【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 27.(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析 【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可 解析:(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析 【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可; (2)如图1(见解析),作于E.易证,由三角形全等的性质得,再证明是等腰直角三角形即可; (3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C.证出和,再利用全等三角形的性质证明是等腰直角三角形即可. 【详解】(1) 由绝对值的非负性和平方数的非负性得: 解得:; (2)如图1,作于E 是等腰直角三角形, ; (3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C ∴ ∵在四边形MCOB中, 是等腰直角三角形 ∴ 是等腰直角三角形 . 【点睛】本题考查了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 初二 数学 上册 期末试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文