七年级数学下册期末几何压轴题试题(带答案).doc
《七年级数学下册期末几何压轴题试题(带答案).doc》由会员分享,可在线阅读,更多相关《七年级数学下册期末几何压轴题试题(带答案).doc(46页珍藏版)》请在咨信网上搜索。
一、解答题 1.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2cm/s的速度沿A→B→C→E运动,最终到达点E.设点P运动的时间为t秒. (1)请以A点为原点,AB所在直线为x轴,1cm为单位长度,建立一个平面直角坐标系,并用t表示出点P在不同线段上的坐标. (2)在(1)相同条件得到的结论下,是否存在P点使△APE的面积等于20cm2时,若存在,请求出P点坐标;若不存在,请说明理由. 2.已知AB∥CD,∠ABE与∠CDE的角分线相交于点F. (1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数; (2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度数; (3)若∠ABM=∠ABF,∠CDM=∠CDF,请直接写出∠M与∠BED之间的数量关系 3.已知,点为平面内一点,于. (1)如图1,求证:; (2)如图2,过点作的延长线于点,求证:; (3)如图3,在(2)问的条件下,点、在上,连接、、,且平分,平分,若,,求的度数. 4.已知:如图(1)直线AB、CD被直线MN所截,∠1=∠2. (1)求证:AB//CD; (2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分∠BPE,QF平分∠EQD,则∠PEQ和∠PFQ之间有什么数量关系,请直接写出你的结论; (3)如图(3),在(2)的条件下,过P点作PH//EQ交CD于点H,连接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度数. 5.如图1,已知直线m∥n,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB. (1)如图1,若∠OPQ=82°,求∠OPA的度数; (2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数; (3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由. 6.已知,,. (1)如图1,求证:; (2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数. 7.规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c. 例如:因为23=8,所以(2,8)=3. (1)根据上述规定,填空: (3,27)=_______,(5,1)=_______,(2, )=_______. (2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明: 设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n 所以3x=4,即(3,4)=x, 所以(3n,4n)=(3,4). 请你尝试运用上述这种方法说明下面这个等式成立的理由:(4,5)+(4,6)=(4,30) 8.观察下列各式,并用所得出的规律解决问题: (1),,,…… ,,,…… 由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位. (2)已知,,则_____;______. (3),,,…… 小数点的变化规律是_______________________. (4)已知,,则______. 9.对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K(n),例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为,,所以. (1)计算:和; (2)若x是“梦幻数”,说明:等于x的各数位上的数字之和; (3)若x,y都是“梦幻数”,且,猜想:________,并说明你猜想的正确性. 10.阅读下面的文字,解答问题. 对于实数a,我们规定:用符号[a]表示不大于a的最大整数;用{a}表示a减去[a]所得的差. 例如:[]=1,[2.2]=2,{}=﹣1,{2.2}=2.2﹣2=0.2. (1)仿照以上方法计算:[]= {5﹣}= ; (2)若[]=1,写出所有满足题意的整数x的值: . (3)已知y0是一个不大于280的非负数,且满足{}=0.我们规定:y1=[],y2=[],y3=[],…,以此类推,直到yn第一次等于1时停止计算.当y0是符合条件的所有数中的最大数时,此时y0= ,n= . 11.阅读材料:求值:, 解答:设, 将等式两边同时乘2得:, 将得:,即. 请你类比此方法计算: . 其中n为正整数 12.对于有理数、,定义了一种新运算“※”为: 如:,. (1)计算:①______;②______; (2)若是关于的一元一次方程,且方程的解为,求的值; (3)若,,且,求的值. 13.已知A(0,a)、B(b,0),且+(b﹣4)2=0. (1)直接写出点A、B的坐标; (2)点C为x轴负半轴上一点满足S△ABC=15. ①如图1,平移直线AB经过点C,交y轴于点E,求点E的坐标; ②如图2,若点F(m,10)满足S△ACF=10,求m. (3)如图3,D为x轴上B点右侧的点,把点A沿y轴负半轴方向平移,过点A作x轴的平行线l,在直线l上取两点G、H(点H在点G右侧),满足HB=8,GD=6.当点A平移到某一位置时,四边形BDHG的面积有最大值,直接写出面积的最大值. 14.如图1,//,点、分别在、上,点在直线、之间,且. (1)求的值; (2)如图2,直线分别交、的角平分线于点、,直接写出的值; (3)如图3,在内,;在内,,直线分别交、分别于点、,且,直接写出的值. 15.如图,在平面直角坐标系中,同时将点A(﹣1,0)、B(3,0)向上平移2个单位长度再向右平移1个单位长度,分别得到A、B的对应点C、D.连接AC,BD (1)求点C、D的坐标,并描出A、B、C、D点,求四边形ABDC面积; (2)在坐标轴上是否存在点P,连接PA、PC使S△PAC=S四边形ABCD?若存在,求点P坐标;若不存在,请说明理由. 16.已知关于x、y的二元一次方程 (1)若方程组的解x、y满足,求a的取值范围; (2)求代数式的值. 17.如图,在平面直角坐标系中,O为坐标原点,点,其中满足,D为直线AB与轴的交点,C为线段AB上一点,其纵坐标为. (1)求的值; (2)当为何值时,和面积的相等; (3)若点C坐标为(-2,1),点M(m,-3)在第三象限内,满足,求m的取值范围. (注:表示的面积) 18.如图1,在直角坐标系中直线与、轴的交点分别为,,且满足. (1)求、的值; (2)若点的坐标为且,求的值; (3)如图2,点坐标是,若以2个单位/秒的速度向下平移,同时点以1个单位/秒的速度向左平移,平移时间是秒,若点落在内部(不包含三角形的边),求的取值范围. 19.某企业用规格是170cm×40cm的标准板材作为原材料,按照图①所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm). (1)求图中a、b的值; (2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图②所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计). ①一共可裁剪出甲型板材 张,乙型板材 张; ②恰好一共可以做出竖式和横式两种无盖装饰盒子多少个? 20.历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示.例如f(x)=x2+3x-5,把x=某数时多项式的值用f(某数)来表示.例如x=-1时多项式x2+3x-5的值记为f(-1)=(-1)2+3×(-1)-5=-7. (1)已知g(x)=-2x2-3x+1,分别求出g(-1)和g(-2); (2)已知h(x)=ax3+2x2-ax-6,当h()=a,求a的值; (3)已知f(x)=--2(a,b为常数),当k无论为何值,总有f(1)=0,求a,b的值. 21.如图,已知,,且满足. (1)求、两点的坐标; (2)点在线段上,、满足,点在轴负半轴上,连交轴的负半轴于点,且,求点的坐标; (3)平移直线,交轴正半轴于,交轴于,为直线上第三象限内的点,过作轴于,若,且,求点的坐标. 22.在平面直角坐标系中,把线段先向右平移h个单位,再向下平移1个单位得到线段(点A对应点C),其中分别是第三象限与第二象限内的点. (1)若,求C点的坐标; (2)若,连接,过点B作的垂线l ①判断直线l与x轴的位置关系,并说明理由; ②已知E是直线l上一点,连接,且的最小值为1,若点B,D及点都是关于x,y的二元一次方程的解为坐标的点,试判断是正数、负数还是0?并说明理由. 23.如图,在平面直角坐标系中,已知,点,,,,,满足, (1)直接写出点,,的坐标及的面积; (2)如图2,过点作直线,已知是上的一点,且,求的取值范围; (3)如图3,是线段上一点, ①求,之间的关系; ②点为点关于轴的对称点,已知,求点的坐标. 24.定义一种新运算“a※b”:当a≥b时,a※b=2a+b;当a<b时,a※b=2a﹣b. 例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24. (1)填空:(﹣2)※3= ; (2)若(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),则x的取值范围为 ; (3)已知(2x﹣6)※(9﹣3x)<7,求x的取值范围; (4)小明在计算(2x2﹣2x+4)※(x2+4x﹣6)时随意取了一个x的值进行计算,得出结果是0,小丽判断小明计算错了,小丽是如何判断的?请说明理由. 25.阅读材料:形如的不等式,我们就称之为双连不等式.求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得,然后同时除以2,得. 解决下列问题: (1)请你写一个双连不等式并将它转化为不等式组; (2)利用不等式的性质解双连不等式; (3)已知,求的整数值. 26.某体育拓展中心的门票每张10元,一次性使用考虑到人们的不同需求,也为了吸引更多的顾客,该拓展中心除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A、B两类:A类年票每张120元,持票者可不限次进入中心,且无需再购买门票;B类年票每张60元,持票者进入中心时,需再购买门票,每次2元. (1)小丽计划在一年中花费80元在该中心的门票上,如果只能选择一种购买门票的方式,她怎样购票比较合算? (2)小亮每年进入该中心的次数约20次,他采取哪种购票方式比较合算? (3)小明根据自己进入拓展中心的次数,购买了A类年票,请问他一年中进入该中心不低于多少次? 27.材料1:我们把形如(、、为常数)的方程叫二元一次方程.若、、为整数,则称二元一次方程为整系数方程.若是,的最大公约数的整倍数,则方程有整数解.例如方程都有整数解;反过来也成立.方程都没有整数解,因为6,3的最大公约数是3,而10不是3的整倍数;4,2的最大公约数是2,而1不是2的整倍数. 材料2:求方程的正整数解. 解:由已知得:……① 设(为整数),则……② 把②代入①得:. 所以方程组的解为 , 根据题意得:. 解不等式组得0<<.所以的整数解是1,2,3. 所以方程的正整数解是:,,. 根据以上材料回答下列问题: (1)下列方程中:① ,② ,③ ,④ ,⑤ ,⑥ .没有整数解的方程是 (填方程前面的编号); (2)仿照上面的方法,求方程的正整数解; (3)若要把一根长30的钢丝截成2长和3长两种规格的钢丝(两种规格都要有),问怎样截才不浪费材料?你有几种不同的截法?(直接写出截法,不要求解题过程) 28.我们把关于x的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”. (1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由; ①; ②. (2)若关于x的组合是“有缘组合”,求a的取值范围; (3)若关于x的组合是“无缘组合”;求a的取值范围. 29.如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过C作轴于B, (1)求a,b的值; (2)在y轴上是否存在点P,使得△ABC和△OCP的面积相等,若存在,求出点P坐标,若不存在,试说明理由. (3)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,图3, ①求:∠CAB+∠ODB的度数; ②求:∠AED的度数. 30.某生态柑橘园现有柑橘21吨,计划租用A,B两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨. (1)1辆A型车和1辆B型车满载时一次分别运柑橘多少吨? (2)若计划租用A型货车m辆,B型货车n辆,一次运完全部柑橘,且每辆车均为满载. ①请帮柑橘园设计租车方案; ②若A型车每辆需租金120元/次,B型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费. 【参考答案】***试卷处理标记,请不要删除 一、解答题 1.(1)建立直角坐标系见解析,当0<t≤4时,即当点P在线段AB上时,其坐标为:P(2t,0),当4<t≤7时,即当点P在线段BC上时,其坐标为:P(8,2t﹣8),当7<t≤10时,即当点P在线段CE上时,其坐标为:P(22﹣2t,6); (2)存在,当点P的坐标分别为:P(,0)或 P(8,4)时,△APE的面积等于. 【分析】 (1)建立平面直角坐标系,根据点P的运动速度分别求出点P在线段AB,BC,CE上的坐标; (2)根据(1)中得到的点P的坐标以及,分别列出三个方程并解出此时t的值再进行讨论. 【详解】 (1)正确画出直角坐标系如下: 当0<t≤4时,点P在线段AB上,此时P点的横坐标为,其纵坐标为0; ∴此时P点的坐标为:P(2t,0); 同理: 当4<t≤7时,点P在线段BC上,此时P点的坐标为:P(8,2t﹣8); 当7<t≤10时,点P在线段CE上,此时P点的坐标为:P(22﹣2t,6). (2)存在, ①如图1,当0<t≤4时,点P在线段AB上, ,解得:t(s); ∴P点的坐标为:P(,0). ②如图2,当4<t≤7时,点P在线段BC上, ; ∴; 解得:t=6(s); ∴点P的坐标为:P(8,4). ③如图3,当7<t≤10时,点P在线段CE上, ; 解得:t(s); ∵7,∴t(应舍去), 综上所述:当P点的坐标为:P(,0)或 P(8,4)时,△APE的面积等于. 【点睛】 本题考查了三角形的面积的计算公式,,在本题计算的过程中根据动点的坐标正确地求出三角形的底边长度和高是解题的关键. 2.(1)65°;(2);(3)2n∠M+∠BED=360° 【分析】 (1)首先作EG∥AB,FH∥AB,连结MF,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+∠CDF=130°,从而得到∠BFD的度数,再根据角平分线的定义和三角形外角的性质可求∠M的度数; (2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代换即可求解; (3)由(2)的方法可得到2n∠M+∠BED=360°. 【详解】 解:(1)如图1,作,,连结, , , ,,,, , , , 和的角平分线相交于, , , 、分别是和的角平分线, ,, , ; (2)如图1,,, ,, 与两个角的角平分线相交于点, ,, , , , ; (3)由(2)结论可得,,, 则. 【点睛】 本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质. 3.(1)见解析;(2)见解析;(3). 【分析】 (1)先根据平行线的性质得到,然后结合即可证明; (2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a,则∠BFC=3a,根据角平分线的定义可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根据三角形内角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度数表达式,再根据平行的性质可得∠AFC+∠NCF=180°,代入即可算出a的度数,进而完成解答. 【详解】 (1)证明:∵, ∴, ∵于, ∴, ∴, ∴; (2)证明:过作, ∵, ∴, 又∵, ∴, ∴, ∵, ∴, ∴, ∴; (3)设∠DBE=a,则∠BFC=3a, ∵BE平分∠ABD, ∴∠ABD=∠C=2a, 又∵AB⊥BC,BF平分∠DBC, ∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45° 又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180° ∴∠BCF=135°-4a, ∴∠AFC=∠BCF=135°-4a, 又∵AM//CN, ∴∠AFC+∠ NCF=180°,即:∠AFC+∠BCN+∠BCF=180°, ∴135°-4a+135°-4a+2a=180,解得a=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 【点睛】 本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键. 4.(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30° 【分析】 (1)首先证明∠1=∠3,易证得AB//CD; (2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线的性质即可证明; (3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,想办法构建方程即可解决问题; 【详解】 (1)如图1中, ∵∠2=∠3,∠1=∠2, ∴∠1=∠3, ∴AB//CD. (2)结论:如图2中,∠PEQ+2∠PFQ=360°. 理由:作EH//AB. ∵AB//CD,EH//AB, ∴EH//CD, ∴∠1=∠2,∠3=∠4, ∴∠2+∠3=∠1+∠4, ∴∠PEQ=∠1+∠4, 同法可证:∠PFQ=∠BPF+∠FQD, ∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°, ∴∠1+∠4+∠EQD+∠BPE=2×180°, 即∠PEQ+2(∠FQD+∠BPF)=360°, ∴∠PEQ+2∠PFQ=360°. (3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y, ∵EQ//PH, ∴∠EQC=∠PHQ=x, ∴x+10y=180°, ∵AB//CD, ∴∠BPH=∠PHQ=x, ∵PF平分∠BPE, ∴∠EPQ+∠FPQ=∠FPH+∠BPH, ∴∠FPH=y+z﹣x, ∵PQ平分∠EPH, ∴Z=y+y+z﹣x, ∴x=2y, ∴12y=180°, ∴y=15°, ∴x=30°, ∴∠PHQ=30°. 【点睛】 本题考查了平行线的判定与性质,角平分线的定义等知识.(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键. 5.(1)49°,(2)44°,(3)∠OPQ=∠ORQ 【分析】 (1)根据∠OPA=∠QPB.可求出∠OPA的度数; (2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题; (3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ. 【详解】 解:(1)∵∠OPA=∠QPB,∠OPQ=82°, ∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°, (2)作PC∥m, ∵m∥n, ∴m∥PC∥n, ∴∠AOP=∠OPC=43°, ∠BQP=∠QPC=49°, ∴∠OPQ=∠OPC+∠QPC=43°+49°=92°, ∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°, (3)∠OPQ=∠ORQ. 理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC, ∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角, ∴∠AOP=∠DOR,∠BQP=∠RQC, ∴∠OPQ=∠ORQ. 【点睛】 本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的. 6.(1)见解析;(2) 【分析】 (1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证; (2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案. 【详解】 (1)证明: ; (2)过点E作,延长DC至Q,过点M作 ,,, AF平分 FH平分 设 , . 【点睛】 本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键. 7.(1)3,0,-2 (2) (4,30) 【解析】 分析:(1)根据阅读材料,应用规定的运算方式计算即可; (2)应用规定和同底数幂相乘的性质逆用变形计算即可. 详解:(1)∵33=27 ∴(3,27)=3 ∵50=1 ∴(5,1)=1 ∵2-2= ∴(2,)=-2 (2)设(4,5)=x,(4,6)=y 则,=6 ∴ ∴(4,30)=x+y ∴(4,5)+(4,6)=(4,30) 点睛:此题是一个规定计算的应用型的题目,关键是灵活应用规定的关系式计算,熟练记忆幂的相关性质. 8.(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01 【分析】 (1)观察已知等式,得到一般性规律,写出即可; (2)利用得出的规律计算即可得到结果; (3)归纳总结得到规律,写出即可; (4)利用得出的规律计算即可得到结果. 【详解】 解:(1),,,…… ,,,…… 由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位. 故答案为:两;右;一; (2)已知,,则;; 故答案为:12.25;0.3873; (3),,,…… 小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位; (4)∵,, ∴, ∴, ∴y=-0.01. 【点睛】 此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键. 9.(1);(2)见解析;(3) 【分析】 (1)根据的定义,可以直接计算得出; (2)设,得到新的三个数分别是:,这三个新三位数的和为,可以得到:; (3)根据(2)中的结论,猜想:. 【详解】 解:(1)已知,所以新的三个数分别是:, 这三个新三位数的和为, ; 同样,所以新的三个数分别是:, 这三个新三位数的和为, . (2)设,得到新的三个数分别是:, 这三个新三位数的和为, 可得到:,即等于x的各数位上的数字之和. (3)设,由(2)的结论可以得到: , , , 根据三位数的特点,可知必然有: , , 故答案是:. 【点睛】 此题考查了多位数的数字特征,每个数字是10以内的自然数且不为0,解题的关键是:结合新定义,可以计算出问题的解,注意把握每个数字都会出现一次的特点,区别数字与多为数的不同. 10.(1)2;3﹣;(2)1、2、3;(3)256,4 【分析】 (1)依照定义进行计算即可; (2)由题可知,,则可得满足题意的整数的的值为1、2、3; (3)由,可知,是某个整数的平方,又是符合条件的所有数中最大的数,则,再依次进行计算. 【详解】 解:(1)由定义可得,,, . 故答案为:2;. (2), ,即, 整数的值为1、2、3. 故答案为:1、2、3. (3),即, 可设,且是自然数, 是符合条件的所有数中的最大数, , , , , , 即. 故答案为:256,4. 【点睛】 本题属于新定义类问题,主要考查估算无理数大小,无理数的整数部分和小数部分,理解定义内容是解题关键. 11.(1);(2). 【解析】 【分析】 设,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值; 同理即可得到所求式子的值. 【详解】 解:设, 将等式两边同时乘2得:, 将下式减去上式得:,即, 则; 设, 两边同时乘3得:, 得:,即, 则. 【点睛】 本题考查了规律型:数字的变化类,有理数的混合运算,解题的关键是明确题意,运用题目中的解题方法,运用类比的数学思想解答问题. 12.(1)①5;②;(2)1;(3)16. 【分析】 (1)根据题中定义代入即可得出; (2)根据,讨论3和 的两种大小关系,进行计算; (3)先判定A、B的大小关系,再进行求解. 【详解】 (1)根据题意:∵, ∴, ∵, ∴. (2)∵, ∴, ① 若, 则,解得, ②若, 则,解得(不符合题意), ∴. (3)∵, ∴, ∴, 得, ∴. 【点睛】 本题考查了一种新运算,读懂题意掌握新运算并能正确化简是解题的关键. 13.(1)A(0,5),B(4,0);(2)①E(0,﹣);②﹣2或6;(3)24. 【分析】 (1)根据二次根式和偶次幂的非负性得出a,b解答即可; (2)①根据三角形的面积公式得出点C的坐标,根据平行线的性质解答即可;②延长CA交直线l于点H(a,10),过点H作HM⊥x轴于点M,根据三角形面积公式解答即可; (3)平移GH到DM,连接HM,根据三角形面积公式解答即可. 【详解】 解:(1)∵,且,(b﹣4)2≥0, ∴a﹣5=0,b﹣4=0, 解得:a=5,b=4, ∴A(0,5),B(4,0); (2)①连接BE,如图1, ∵, ∴BC=6, ∴C(﹣2,0), ∵AB∥CE, ∴S△ABC=S△ABE, ∴, ∴AE=, ∴OE=, ∴E(0,﹣); ②∵F(m,10), ∴点F在过点G(0,10)且平行于x轴的直线l上, 延长CA交直线l于点H(a,10),过点H作HM⊥x轴于点M,则M(a,0),如图2, ∵S△HCM=S△ACO+S梯形AOMH, ∴, 解得:a=2, ∴H(2,10), ∵S△AFC=S△CFH﹣S△AFH, ∴, ∴FH=4, ∵H(2,10), ∴F(﹣2,10)或(6,10), ∴m=﹣2或6; (3)平移GH到DM,连接HM,则GD∥HM,GD=HM,如图3, 四边形BDHG的面积=△BHM的面积, 当BH⊥HM时,△BHM的面积最大,其最大值=. 【点睛】 本题主要考查图形与坐标及平移的性质,熟练掌握图形与坐标及平移的性质是解题的关键. 14.(1) ;(2)的值为40°;(3). 【分析】 (1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解; (2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,进而求解; (3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得 即可得关于n的方程,计算可求解n值. 【详解】 证明:过点O作OG∥AB, ∵AB∥CD, ∴AB∥OG∥CD, ∴ ∴ 即 ∵∠EOF=100°, ∴∠; (2)解:过点M作MK∥AB,过点N作NH∥CD, ∵EM平分∠BEO,FN平分∠CFO, 设 ∵ ∴ ∴x-y=40°, ∵MK∥AB,NH∥CD,AB∥CD, ∴AB∥MK∥NH∥CD, ∴ ∴ =x-y =40°, 的值为40°; (3)如图,设直线FK与EG交于点H,FK与AB交于点K, ∵AB∥CD, ∴ ∵ ∴ ∵ ∴ 即 ∵FK在∠DFO内, ∴ , ∵ ∴ ∴ 即 ∴ 解得 . 经检验,符合题意, 故答案为:. 【点睛】 本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键. 15.(1)(0,2),(4,2),见解析,ABDC面积:8;(2)存在,P的坐标为(7,0)或 (﹣9,0)或(0,18)或 (0,﹣14). 【解析】 【分析】 (1)根据向右平移横坐标加,向上平移纵坐标加写出点C、D的坐标即可,再根据平行四边形的面积公式列式计算即可得解; (2)分点P在x轴和y轴上两种情况,依据S△PAC=S四边形ABCD求解可得. 【详解】 (1)由题意知点C坐标为(﹣1+1,0+2),即(0,2), 点D的坐标为(3+1,0+2),即(4,2), 如图所示, S四边形ABDC=2×4=8; (2)当P在x轴上时, ∵S△PAC=S四边形ABCD, ∴, ∵OC=2, ∴AP=8, ∴点P的坐标为 (7,0)或(﹣9,0); 当P在y轴上时, ∵S△PAC=S四边形ABCD, ∴, ∵OA=1, ∴CP=16, ∴点P的坐标为(0,18)或(0,﹣14); 综上,点P的坐标为(7,0)或 (﹣9,0)或(0,18)或(0,﹣14). 【点睛】 本题考查了坐标与图形性质,三角形的面积,坐标与图形变化﹣平移,熟记各性质是解题的关键. 16.(1);(2)-17 【分析】 (1)解方程组求出x、y的值,根据列不等式组求出答案; (2)将两个方程相加,求得6x+3y=-9,即可得到答案. 【详解】 解:(1)解方程组得, ∵, ∴, 解得; (2)由①+②得2x+y=-3, ∴3(2x+y)=-9,即6x+3y=-9, ∴=-9-8=-17. 【点睛】 此题考查解二元一次方程组,解一元一次不等式组,已知式子的值求代数式的值,正确解方程组是解题的关键. 17.(1);(2)当时,和面积的相等;(3)m的取值范围是 【分析】 (1)利用非负数的性质求出a,b,c即可. (2)设点D的坐标为(0,y),根据面积关系,构建方程求出y,再根据△BOC和△AOD面积的相等,构建方程求出t即可. (3)分两种情形:①当-2<m<0时,如图1中,②当m≤-2时,如图2中,根据S△MOC≥5,构建不等式求解即可. 【详解】 解:(1)∵|a-2|+(b-3)2+=0, 又∵|a-2|≥0,(b-3)2≥0,≥0, ∴, ∴a=2,b=3,c=-4; (2)设点D的坐标为(0,y), 则S△BOD=×BO×OD=×4×y=2y, S△AOD=xA•OD=×2y=y, S△AOB=×OB•yA=×4×3=6, ∵S△BOD+S△AOD=S△AOB,即2y+y=6, 解得y=2,即点D的坐标为(0,2), ∴S△BOC=BO•yc=×4t=2t,S△AOD=xA•OD=×2×2=2, ∵△BOC和△AOD面积的相等,即2t=2, 解得t=1, ∴当t=1时,△BOC和△AOD面积的相等; (3)①当-2<m<0时,如图1中, 过点C作CF⊥轴于点F,过点M作GE⊥轴于点E,过点C作CG⊥轴交GE于点G, 则四边形CGEF为矩形, ∵SCGEF=2×4=8,S△CFO=×2×1=1, S△EMO=×(0−m)×3=−m,S△CMG=×(m+2)×4=2(m+2), ∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=8−1−(−m)−2(m+2)=3−m, ∵S△MOC≥5,即3−m≥5,解得m≤-4, 这与-2<m<0矛盾. ②当m≤-2时,如图2中, 过点C作GF⊥轴于点F,过点M作ME⊥轴于点E,过点M作MG⊥轴交GF于点G, 则四边形MEFG为矩形, ∵SGMEF=(0-m)×4=-4m,S△CFO=×2×1=1, S△EMO=×(0−m)×3=−m,S△CMG=×(−2−m)×4=−2(m+2), ∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=−4m−1−(−m)−[−2(m+2)]=3−m, ∵S△MOC≥5,即3−m≥5,解得m≤-4, 综上所述,m的取值范围是m≤-4. 【点睛】 本题考查了坐标与图形的性质,三角形的面积,非负数的性质等知识,解题的关键是学会利用参数,构建方程解决问题,属于中考压轴题. 18.(1),;(2)或;(3) 【分析】 (1)根据非负数和为0,则每一个非负数都是0,即可求出a,b的值; (2)设直线AB与直线x=1交于点N,可得N(1,5),根据S△ABM=S△AMN−S△BMN,即可表示出S△ABM,从而列出m的方程. (3)根据题意知,临界状态是点P落在OA和AB上,分别求出此时t的值,即可得出范围. 【详解】 (1)∵,, ∴, 解得:, (2)设直线与直线交于,设 ∵a=−4,b=4, ∴A(−4,0),B(0,4), 设直线AB的函数解析式为:y=kx+b, 代入得,解得 ∴直线AB的函数解析式为:y=x+4, 代入x=1得 ∵ ∴=×5×|5−m|−×1×|5−m|=2|5−m|, ∵ ∴ ∴或 解得:或, (3)当点P在OA边上时,则2t=2, ∴t=1, 当点P在AB边上时,如图,过点P作PKx轴,AK⊥x轴交于K, 则KP'=3−t,KA'=2t−2, ∴3−t=2t−2, ∴ 综上所述:. 【点睛】 本题主要考查了平移的性质- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 七年 级数 下册 期末 几何 压轴 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文