合肥48中初一数学上册期末压轴题汇编.doc
《合肥48中初一数学上册期末压轴题汇编.doc》由会员分享,可在线阅读,更多相关《合肥48中初一数学上册期末压轴题汇编.doc(37页珍藏版)》请在咨信网上搜索。
1、合肥48中初一数学上册期末压轴题汇编一、七年级上册数学压轴题1如图,已知AOB=120,射线OP从OA位置出发,以每秒2的速度顺时针向射线OB旋转;与此同时,射线OQ以每秒6的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动. 设旋转时间为t秒(1)当t=2时,求POQ的度数;(2)当POQ=40时,求t的值;(3)在旋转过程中,是否存在t的值,使得POQ=AOQ?若存在,求出t的值;若不存在,请说明理由答案:(1)POQ =104;(2)当POQ=40时,t的值为10或20;(3)存在,t=12或或,使得
2、POQ=AOQ【分析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=解析:(1)POQ =104;(2)当POQ=40时,t的值为10或20;(3)存在,t=12或或,使得POQ=AOQ【分析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=20;当OQ,OP第二次相遇时,t=30;(1)当t=2时,得到AOP=2t=4,BOQ=6t=12,利用POQ =AOB-AOP-BOQ求出结果即可;(2)分三种情况:当0t15时,当15t20时,当20t30时,分别列出等量关系式求解即可;(3)分三种情况:当0t15时,当15t20时,当20t30时,分别列出等量关系式求解即
3、可【详解】解:当OQ,OP第一次相遇时,2t+6t=120,t=15;当OQ刚到达OA时,6t=120,t=20;当OQ,OP第二次相遇时,2t6t=120+2t,t=30;(1)当t=2时,AOP=2t=4,BOQ=6t=12,POQ =AOB-AOP-BOQ=120-4-12=104. (2)当0t15时,2t +40+6t=120, t=10;当15t20时,2t +6t=120+40, t=20;当20t30时,2t =6t-120+40, t=20(舍去); 答:当POQ=40时,t的值为10或20. (3)当0t15时,120-8t=(120-6t),120-8t=60-3t,t=
4、12;当15t20时,2t (120-6t)=(120 -6t),t=.当20t30时,2t (6t -120)=(6t -120),t=.答:存在t=12或或,使得POQ=AOQ.【分析】本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程2(阅读理解)若为数轴上三点,若点到的距离是点到的距离的2倍,我们就称点是()的优点例如,如图1,点表示的数为-1,点表示的数为2,表示1的点到点的距离是2,到点的距离是1,那么点是()的优点:又如,表示0的点到点的距离是1,到点的距离是2,那么点就不是()的优点,但点是()的优点(知识运用)如图2,为数轴上两点,点所表示的
5、数为-2,点所表示的数为4(1)数所表示的点是()的优点:(2)如图3,为数轴上两点,点所表示的数为-20,点所表示的数为40.现有一只电子蚂蚁从点出发,以3个单位每秒的速度向左运动,到达点停止当为何值时,和中恰有一个点为其余两点的优点?(请直接与出答案)答案:(1)x2或x10;(2)或或10【分析】(1)设所求数为x,根据优点的定义列出方程x(2)2(4x)或x(2)2(x4),解方程即可;(2)根据题意点P在线段AB上,由解析:(1)x2或x10;(2)或或10【分析】(1)设所求数为x,根据优点的定义列出方程x(2)2(4x)或x(2)2(x4),解方程即可;(2)根据题意点P在线段A
6、B上,由优点的定义可分4种情况:P为(A,B)的优点;A为(B,P)的优点;P为(B,A)的优点;B为(A,P)的优点,设点P表示的数为y,根据优点的定义列出方程,进而得出t的值【详解】解:(1)设所求数为x,由题意得x(2)2(4x)或x(2)2(x4),解得:x2或x10;(2)设点P表示的数为y,分四种情况:P为(A,B)的优点由题意,得y(20)2(40y),解得y20,t(4020)3(秒);A为(B,P)的优点由题意,得40(20)2y(20),解得y10,t(4010)310(秒);P为(B,A)的优点由题意,得40y2y(20),解得y0,t(400)3(秒);B为(A,P)的
7、优点40-(-20)=2(40-x),解得:x=10t=(40-10) 3=10(秒)综上可知,当t为10秒、秒或秒时,P、A和B中恰有一个点为其余两点的优点故答案为:或或10【点睛】本题考查了数轴及一元一次方程的应用,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解3“数形结合”是重要的数学思想请你结合数轴与绝对值的知识回答下列问题:(1)一般地,数轴上表示数m和数n的两点之间的距离等于mn如果表示数a和2的两点之间的距离是3,记作a(2)3,那么a (2)利用绝对值的几何意义,探索a4a2的最小值为_,若a4a210,则a的值为_(3)当a_时,a5a1a4的
8、值最小(4)如图,已知数轴上点A表示的数为4,点B表示的数为1,C是数轴上一点,且AC8,动点P从点B出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t0)秒点M是AP的中点,点N是CP的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,求线段MN的长度答案:(1)1或-5;(2)6,4或-6;(3)1;(4)不变,线段MN的长度为4【分析】(1)根据两点间的距离公式,到2点距离是3的点有两个,即可求解;(2)当点a在点-4和点2之间时,的值最小解析:(1)1或-5;(2)6,4或-6;(3)1;(4)不变,线段MN的长度为4【分析】(1)根据两
9、点间的距离公式,到2点距离是3的点有两个,即可求解;(2)当点a在点-4和点2之间时,的值最小;分两种情况,或,化简绝对值即可求得;(3)根据表示点a到5,1,4三点的距离的和,即可求解;(4)因为点A表示的数为4和AC8,所以点C表示的数为-4,点P表示的数为(1-6t),则点M表示的数为 ,点N表示的数为 ,两数相减取绝对值即可求得【详解】(1) a(2)3或a(2)-3解得a=1或-5故答案为:1或-5(2)当点a在点-4和点2之间时,的值最小数a的点位于-4与2之间a+40,a-20 =a+4-a+2=6;当时a+40,a-20= =10解得a= -6当时a+40,a-20= =10解
10、得a= 4故答案为:6,4或-6(3)根据表示一点到-5,1,4三点的距离的和所以当a=1时,式子的值最小此时的最小值是9故答案为:1(4)AC8点C表示的数为-4又点P表示的数为(1-6t)则点M表示的数为 ,点N表示的数为 线段MN的长度不发生变化,其值为4【点睛】此题考查绝对值的意义、数轴、结合数轴求两点之间的距离,掌握数形结合的思想是解决此题的关键4已知实数,在数轴上所对应的点分别为A,B,C,其中b是最小的正整数,且,满足两点之间的距离可用这两点对应的字母表示,如:点A与点B之间的距离可表示为AB(1) , , ;(2)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左
11、运动,同时,点B以每秒2个单位长度的速度向右运动,点C以每秒5个单位长度的速度向右运动,假设运动时间为t秒,则 , ;(结果用含t的代数式表示)这种情况下,的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值;(3)若A,C两点的运动和(2)中保持不变,点B 变为以每秒n()个单位长度的速度向右运动,当时,求n的值答案:(1)-2,1,5;(2)不变,值为1;(3)或【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)用关于解析:(1)-2,1,5;(2)不变,值为1;(3)或【分析】(1)根
12、据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)用关于t的式子表示BC和AB即可求解;(3)分别求出当t=3时,A、B、C表示的数,得到AC和BC,根据AC=2BC列出方长,解之即可【详解】解:(1),b是最小的正整数,c-5=0,a+2b=0,b=1,a=-2,b=1,c=5,故答案为:-2,1,5;(2)点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,t秒后,A表示的数为-t-2,B表示的数为2t+1,C表示的数为5t+5,BC=5t+5-(2t+1)=3t+
13、4,AB=2t+1-(-t-2)=3t+3,BC-AB=3t+4-(3t+3)=1,BC-AB的值不会随着时间t的变化而改变,BC-AB=1;(3)当t=3时,点A表示-2-3=-5,点B表示1+3n,点C表示5+53=20,AC=20-(-5)=25,BC=,AC=2BC,则25=2,则25=2(19-3n),或25=2(3n-19),解得:n=或【点睛】此题考查一元一次方程的实际运用,以及数轴与绝对值,正确理解AB,BC的变化情况是关键5阅读下面的材料并解答问题:点表示数,点表示数,点表示数,且点到点的距离记为线段的长,线段的长可以用右边的数减去左边的数表示,即若是最小的正整数,且满足(1
14、)_,_(2)若将数轴折叠,使得与点重合:点与数_表示的点重合;若数轴上两点之间的距离为2018(在的左侧),且两点经折叠后重合,则两点表示的数是_、_(3)点开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,设运动时间为秒,试探索:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出其值答案:(1)1,5;(2)3;-1007,1011;(3)不变,值为8【分析】(1)利用非负性可求解;(2)由中点坐标公式可求AC的中点表示的数是2,由折叠的性质可求解;由折叠的性质可求解解析:(1)1,5;(2)3;-1007,
15、1011;(3)不变,值为8【分析】(1)利用非负性可求解;(2)由中点坐标公式可求AC的中点表示的数是2,由折叠的性质可求解;由折叠的性质可求解;(3)利用两点距离公式分别求出AC,AB,表示出3AC-5AB,再化简即可求解【详解】解:(1)b是最小的正整数,b=1,(c-5)2+|a+b|=0c=5,a=-b=-1,故答案为:1,5;(2)将数轴折叠,使得A与C点重合:AC的中点表示的数是(-1+5)2=2,与点B重合的数=2-1+2=3;点P表示的数为2-20182=-1007,点Q表示的数为2+20182=1011,故答案为:-1007,1011;(3)3AC-5AB的值不变理由是:点
16、A表示的数为:-1-2t,点B表示的数为:1+t,点C表示的数为:5+3t,AC=5+3t-(-1-2t)=6+5t,AB=1+t-(-1-2t)=2+3t,3AC-5AB=3(6+5t)-5(2+3t)=8,所以3AC-5AB的值不变,为8【点睛】本题考查了数轴,非负性,折叠的性质,两点距离公式,灵活运用这些性质解决问题是本题的关键6已知a是最大的负整数,b是的倒数,c比a小1,且a、b、c分别是A、B、C在数轴上对应的数若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴负方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度(1)在数轴上标出点A、B、C的位置;
17、(2)运动前P、Q两点间的距离为 ;运动t秒后,点P,点Q运动的路程分别为 和 ;(3)求运动几秒后,点P与点Q相遇?(4)在数轴上找一点M,使点M到A、B、C三点的距离之和等于11,直接写出所有点M对应的数答案:(1)见解析;(2)6,3t,t;(3)1.5;(4)3或-3【分析】(1)理解与整数、倒数有关概念,能够正确在数轴上找到所对应的点;(2)根据数轴上两点间的距离的求法,以及路程=速度时间解析:(1)见解析;(2)6,3t,t;(3)1.5;(4)3或-3【分析】(1)理解与整数、倒数有关概念,能够正确在数轴上找到所对应的点;(2)根据数轴上两点间的距离的求法,以及路程=速度时间进行
18、求解;(3)根据速度和时间=路程和,列出方程求解即可;(4)分当M在C点左侧,当M在线段AC上,当M在线段AB上(不含点A),当M在点B的右侧,四种情况列出方程求解【详解】解:(1)a是最大的负整数,a=-1,b是的倒数,b=5,c比a小1,c=-2,如图所示:(2)运动前P、Q两点之间的距离为5-(-1)=6;运动t秒后,点P,点Q运动的路程分别为3t和t,故答案为:6,3t,t;(3)依题意有3t+t=6,解得t=1.5故运动1.5秒后,点P与点Q相遇;(4)设点M表示的数为x,使P到A、B、C的距离和等于11,当M在C点左侧,(-1)-x+5-x+(-2)-x=11解得x=-3,即M对应
19、的数是-3 当M在线段AC上,x-(-2)-1-x+5-x=11,解得:x=-5(舍);当M在线段AB上(不含点A),x-(-1)+5-x+x-(-2)=11,解得x=3,即M对应的数是3当M在点B的右侧,x-(-1)+x-5+x-(-2)=11,解得:x=(舍),综上所述,点M表示的数是3或-3【点睛】此题主要考查了一元一次方程的应用,与数轴有关计算问题,能够正确表示数轴上两点间的距离7阅读绝对值拓展材料:表示数a在数轴上的对应点与原点的距离如:表示5在数轴上的对应点到原点的距离而,即表示5、0在数轴上对应的两点之间的距离,类似的,有:表示5、在数轴上对应的两点之间的距离一般地,点A、B在数
20、轴上分别表示有理数a、b,那么A、B之间的距离可表示为回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ,数轴上表示1和的两点之间的距离是 ;(2)数轴上表示x和的两点A和B之间的距离是 ,如果A、B两点之间的距离为2,那么 (3)可以理解为数轴上表示x和 的两点之间的距离(4)可以理解为数轴上表示x的点到表示 和 这两点的距离之和可以理解为数轴上表示x的点到表示 和 这两点的距离之和(5)最小值是 ,的最小值是 答案:(1)3,4;(2)|x+1|,x=1或-3;(3)-2;(4)2,3,-2,1;(5)1,3【分析】(1)根据两点之间的距离公式计算即可;(2)根据两点之间的距离公式计
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 合肥 48 初一 数学 上册 期末 压轴 汇编
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。