七年级下册数学期末复习压轴题-解答题试卷(含答案).doc
《七年级下册数学期末复习压轴题-解答题试卷(含答案).doc》由会员分享,可在线阅读,更多相关《七年级下册数学期末复习压轴题-解答题试卷(含答案).doc(19页珍藏版)》请在咨信网上搜索。
七年级下册数学期末复习压轴题 解答题试卷(含答案) 一、解答题 1.如图1,在△ABC的AB边的异侧作△ABD,并使∠C=∠D,点E在射线CA上. (1)如图,若AC∥BD,求证:AD∥BC; (2)若BD⊥BC,试解决下面两个问题: ①如图2,∠DAE=20°,求∠C的度数; ②如图3,若∠BAC=∠BAD,过点B作BF∥AD交射线CA于点F,当∠EFB=7∠DBF时,求∠BAD的度数. 2.解不等数组:,并在数轴上表示出它的解集. 3.利用多项式乘法法则计算: (1) = ; = . 在多项式的乘法公式中,除了平方差公式,完全平方公式之外,如果把上面计算结果作为结论逆运用,则成为因式分解中的立方和与立方差公式. 已知,利用自己所学的数学知识,以及立方和与立方差公式,解决下列问题: (2) ;(直接写出答案) (3) ;(直接写出答案) (4) ;(写出解题过程) 4.己知关于x、y的二元一次方程组的解互为相反数,求k的值。 5.已知有理数满足:,且,求的值. 6.计算: (1) (2) (3) (4) 7.如图,已知AB∥CD, ,BE与CF平行吗? 8.计算: (1) (2) (3) (4) 9.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处. (1)若,________. (2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论. ②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明. (3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________. 10.已知,求①的值; ② 的值 11.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x、y的等式表示) ; (2)若,,求的值; (3)若,求的值. 12.先化简,再求值:(2x+2)(2﹣2x)+5x(x+1)﹣(x﹣1)2,其中x=﹣2. 13.(问题背景) (1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D (简单应用) (2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数(可直接使用问题(1)中的结论) (问题探究) (3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A=30°,∠C=18°,则∠P的度数为 (拓展延伸) (4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 (用x、y表示∠P) (5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论 . 14.先化简,再计算:(2a+b)(b-2a)-(a-b)2,其中a=-1,b=-2 15.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品. (1)若万元,求领带及丝巾的制作成本是多少? (2)若用元钱全部用于制作领带,总共可以制作几条? (3)若用元钱恰好能制作300份其他的礼品,可以选择条领带和条丝巾作为一份礼品(两种都要有),请求出所有可能的、的值. 16.四边形ABCD中,∠A=140°,∠D=80°. (1)如图①,若∠B=∠C,试求出∠C的度数; (2)如图②,若∠ABC的角平分线交DC于点E,且BE∥AD,试求出∠C的度数; (3)如图③,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数. 17.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′. (1)请在图中画出平移后的△A′B′C′; (2)画出平移后的△A′B′C′的中线B′D′ (3)若连接BB′,CC′,则这两条线段的关系是________ (4)△ABC在整个平移过程中线段AB 扫过的面积为________ (5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有______个 (注:格点指网格线的交点) 18.已知a+b=2,ab=-1,求下面代数式的值: (1)a2+b2;(2)(a-b)2. 19.计算: (1)2x3y•(﹣2xy)+(﹣2x2y)2; (2)(2a+b)(b﹣2a)﹣(a﹣3b)2. 20.已和,如图,BE平分∠ABC,∠1=∠2,请说明∠AED=∠C.根据提示填空. ∵BE平分∠ABC(已知) ∴∠1=∠3,( ) 又∵∠1=∠2,(已知) ∴ =∠2,( ) ∴ ∥ ,( ) ∴∠AED= .( ) 【参考答案】***试卷处理标记,请不要删除 一、解答题 1.(1)见解析;(2)35°;(3)117° 【分析】 (1)由AC∥BD得∠D=∠DAE,角的等量关系证明∠DAE与∠C相等,根据同位角得AD∥BC; (2)由BD⊥BC得∠HBC=90°,余角的性质和三角形外角性质解得∠C的度数为35°; (3)由BF∥AD得∠D=∠DBF,垂直的定义得∠DBC=90°,三角形的内角和定理,角的和差求得∠DBA=∠CBA=45°,由已知条件∠EFB=7∠DBF,角的和差得出∠BAD的度数为117°. 【详解】 解:(1)如图1所示: ∵AC∥BD, ∴∠D=∠DAE, 又∵∠C=∠D, ∴∠DAE=∠C, ∴AD∥BC; (2)①如图2所示: ∵BD⊥BC, ∴∠HBC=90°, ∴∠C+∠BHC=90°, 又∵∠BHC=∠DAE+∠D, ∠C=∠D,∠DAE=20°, ∴20°+2∠C=90°, ∴∠C=35°; ②如图3所示: ∵BF∥AD, ∴∠D=∠DBF, 又∵∠C=∠D, ∴∠C=∠D=∠DBF, 又∵BD⊥BC, ∴∠DBC=90°, 又∵∠D+∠DBA+∠BAD=180°, ∠C+∠CBA+∠BAC=180°. ∠BAC=∠BAD, ∴∠DBA=∠CBA=45°, 又∵∠EFB=7∠DBF, ∠EFB=∠FBC+∠C, ∴7∠DBF=2∠DBF+∠DBC, 解得:∠DBF=18°, ∴∠BAD=180°﹣45°﹣18°=117°. 【点睛】 本题考查了平行线的判定与性质,余角的性质,三角形的内角和性质,三角形的外角性质,角的和差等相关知识点,掌握平行线的判定与性质,三角形内角和和外角的性质是解题的关键. 2.解集为1≤x﹤4,数轴表示见解析 【分析】 分别解两个不等式的解集,它们的公共部分即为不等式组的解集,然后把解集表示在数轴上即可. 【详解】 解不等式①得:x≥1, 解不等式②得:x﹤4, ∴不等式组的解集为1≤x﹤4, 在数轴上表示为: . 【点睛】 本题考查一元一次不等式组和在数轴上表示不等式的解集,正确求出每个不等式的解集是解答的关键. 3.(1),;(2)6;(3)14;(4)198 【分析】 (1)根据整式的混合运算法则展开计算即可; (2)利用完全平方公式变形,再代入求值; (3)利用立方差公式和完全平方公式变形,再代入求值; (4)利用立方差公式和完全平方公式变形,再代入求值; 【详解】 解:(1) = = = =, 故答案为:,; (2) = = =6; (3) = = = =14; (4) = = = =198 【点睛】 本题考查了因式分解-运用公式法,正确的理解已知条件中的公式是解题的关键. 4.k=1 【分析】 方程组两方程相加得出x+y=,根据x与y互为相反数得到x+y=0,求出k的值即可. 【详解】 解:, ①+②得:3(x+y)=k-1,即x+y=, 由题意得:x+y=0,即=0, 解得:k=1. 【点睛】 本题考查了二元一次方程组的解的概念及相反数的性质,两个方程相加得到3(x+y)=k-1是解题的关键. 5.【分析】 利用将整理求出的值,然后将利用完全平方公式变形,将各自的值代入计算即可求出值. 【详解】 ∵, ∴化简得:, ∵, ∴可化为:, 即有:, ∴. 【点睛】 此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键. 6.(1)4;(2);(3)-4ab+9b2;(4)m2-4n2+12n-9. 【分析】 (1)原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果; (2)原式利用积的乘方运算法则计算,合并即可得到结果; (3)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果; (4)原式利用平方差公式化简,再利用完全平方公式展开,计算即可得到结果. 【详解】 解:(1)原式=-1+1+4=4; (2)原式=; (3)原式=4a2-12ab+9b2-4a2+8ab=-4ab+9b2; (4)原式=m2-(2n-3)2=m2-4n2+12n-9. 【点睛】 此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键. 7.见解析. 【分析】 先根据平行线的性质得出,再根据角的和差得出,然后根据平行线的判定即可得. 【详解】 ,理由如下: ∵ ∴(两直线平行,内错角相等) ∵ ∴即 ∴.(内错角相等,两直线平行) 【点睛】 本题考查了角的和差、平行线的判定与性质,掌握平行线的判定与性质是解题关键. 8.(1) ;(2);(3) ;(4) 【分析】 (1)直接利用积的乘方和单项式乘单项式法则计算即可; (2)直接利用单项式乘多项式法则计算即可; (3)直接利用平方差公式计算即可; (4)先利用平方差公式展开,再利用完全平方公式计算即可. 【详解】 解:(1)原式 ; (2)原式 ; (3)原式; (4)原式 . 【点睛】 本题考查了整式乘法和乘法公式的运用,熟练掌握整式的乘法法则及乘法公式是解决本题的关键. 9.(1)50°;(2)①见解析;②见解析;(3)360°. 【分析】 (1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠AEB和∠ADC得:∠1+∠2等于360°与四个折叠角的差,化简得结果; ②利用两次外角定理得出结论; (3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解. 【详解】 解:(1)∵,, ∴∠A′=∠A=180°-(65°+70°)=45°, ∴∠A′ED+∠A′DE =180°-∠A′=135°, ∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°; (2)①,理由如下 由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED, ∵∠AEB+∠ADC=360°, ∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED, ∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A; ②,理由如下: ∵是的一个外角 ∴. ∵是的一个外角 ∴ 又∵ ∴ (3)如图 由题意知, ∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A') 又∵∠B=∠B',∠C=∠C',∠A=∠A', ∠A+∠B+∠C=180°, ∴∠1+∠2+∠3+∠4+∠5+∠6=360°. 【点睛】 题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度. 10.①6;② 【解析】 解:① ② 11.(1);(2);(3). 【分析】 (1)阴影部分的面积可以由边长为x+y的大正方形的面积减去边长为x-y的小正方形面积求出,也可以由4个长为x,宽为y的矩形面积之和求出,表示出即可; (2)先利用完全平方公式展开,然后两个式子相减,即可求出答案; (3)利用完全平方变形求值,即可得到答案. 【详解】 解:(1)图中阴影部分的面积为: ; 故答案为:; (2)∵, ∴①, ∵, ∴②, ∴由②①,得 , ∴; (3)∵, ∴, ∴, ∴; ∴; 【点睛】 本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键. 12.;-11 【分析】 根据整式的运算法则即可求出答案. 【详解】 解: 当时,原式. 【点睛】 本题考查整式化简求值,熟练运用运算法则是解题的关键. 13.(1)证明见解析;(2)24°;(3)24°;(4)∠P=x+y;(5)∠P= 【分析】 (1)根据三角形内角和为180°,对顶角相等,即可证得∠A+∠B=∠C+∠D (2)由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②,将两个式子相加,已知AP、CP分别平分∠BAD、∠BCD,可得∠BAP=∠PAD,∠BCP=∠PCD,可证得∠P=(∠ABC+∠ADC),即可求出∠P度数. (3)已知直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,可得∠1=∠2,∠3=∠4,由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1,∠A+∠4=∠P+∠2,两式相加即可求出∠P的度数. (4)由(1)的结论得:∠CAB+∠C=∠P+∠CDB,∠CAB+∠P=∠B+∠CDB,第一个式子乘以3,得到的式子减去第二个式子即可得出用x、y表示∠P (5)延长AB交DP于点F,标注出∠1,∠2,∠3,∠4,由(1)的结论得:∠A+2∠1=∠C+180°-2∠3,其中根据对顶角相等,三角形内角和,以及外角的性质即可得到∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P,代入∠A+2∠1=∠C+180°-2∠3,即可得出∠P与∠A、∠C的关系. 【详解】 (1)如图1, ∠A+∠B+∠AOB=∠C+∠D+∠COD=180° ∵∠AOB=∠COD ∴∠A+∠B=∠C+∠D (2)∵AP、CP分别平分∠BAD、∠BCD ∴∠BAP=∠PAD,∠BCP=∠PCD, 由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC② ①+②,得2∠P+∠PAD+∠BCP=∠BAP+∠ABC +∠PCD+∠ADC ∴∠P=(∠ABC+∠ADC) ∴∠ABC=28°,∠ADC=20° ∴∠P=(28°+20°) ∴∠P=24° 故答案为:24° (3)∵如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE, ∴∠1=∠2,∠3=∠4 由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1①,∠A+∠4=∠P+∠2② ①+②,得∠C+180°-∠3+∠A+∠4=∠P+180°-∠1+∠P+∠2 ∴30°+18°=2∠P ∴∠P=24° 故答案为:24° (4)由(1)的结论得:∠CAB+∠C=∠P+∠CDB①,∠CAB+∠P=∠B+∠CDB② ①×3,得∠CAB+3∠C=3∠P+∠CDB③ ②-③,得∠P-3x=y-3∠P ∴∠P=x+y 故答案为:∠P=x+y (5)如图5所示,延长AB交DP于点F 由(1)的结论得:∠A+2∠1=∠C+180°-2∠3 ∵∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P ∴∠A+360°-2∠A-2∠3-2∠P=∠C+180°-2∠3 解得:∠P= 故答案为:∠P= 【点睛】 本题是考查了角平分线性质及三角形内角和定理,对顶角相等,三角形任一外角等于不相邻的两个内角和等知识点,本题是典型的拓展延伸题,一般第一问得出基本结论,后面的问题将基本结论作为解题基础,进行拓展延伸. 14.-5a2+2ab,-1 【分析】 先利用平方差公式和完全平方公式进行计算,然和合并同类项,最后把a,b的值代入即可. 【详解】 , 当a=-1,b=-2时,原式=-1. 【点睛】 本题考查了整式的化简求值,解题的关键是熟练掌握混合运算的顺序和整式的乘法公式. 15.(1)领带的制作成本是120元,丝巾的制作成本是160元;(2)可以制作2000条领带;(3) 【分析】 (1)设领带及丝巾的制作成本是x元和y元,根据题意列出方程组求解即可; (2)由与可得到,代入可得,即可求得答案; (3)根据即可表达出、的关系式即可解答. 【详解】 解:(1)设领带及丝巾的制作成本是x元和y元, 则 解得: 答:领带的制作成本是120元,丝巾的制作成本是160元. (2)由题意可得:,且, ∴, 整理得:,代入 可得:, ∴可以制作2000条领带. (3)由(2)可得:, ∴ 整理可得: ∵、都为正整数, ∴ 【点睛】 本题考查了二元一次方程组的综合应用,解题的关键是根据题意列出方程,并对已知条件进行适当的变形. 16.(1)70°;(2)60°;(3)110° 【分析】 (1)根据四边形的内角和是360°,结合已知条件就可求解; (2)根据平行线的性质得到∠ABE的度数,再根据角平分线的定义得到∠ABC的度数,进一步根据四边形的内角和定理进行求解; (3)根据四边形的内角和定理以及角平分线的概念求得∠EBC+∠ECB的度数,再进一步求得∠BEC的度数. 【详解】 (1)在四边形ABCD中, ∵∠A+∠B+∠C+∠D=360°, 又∠A=140°,∠D=80°,∠B=∠C, ∴140°+∠C+∠C+80°=360°,即∠C=70°. (2)∵BE∥AD,∠A=140°,∠D=80°, ∴∠BEC=∠D,∠A+∠ABE=180°. ∴∠BEC=80°,∠ABE=40°. ∵BE是∠ABC的平分线, ∴∠EBC=∠ABE=40°. ∴∠C=180°-∠EBC-∠BEC=180°-40°-80°=60°. (3)在四边形ABCD中, 有∠A+∠ABC+∠BCD+∠D=360°, ∠A=140°,∠D=80°, 所以∠ABC+∠BCD=140°,从而有∠ABC+∠BCD=70°. 因为∠ABC和∠BCD的角平分线交于点E,所以有∠EBC=∠ABC,∠ECB=∠BCD. 故∠C=180°-(∠EBC +∠ECB)=180°-(∠ABC+∠BCD)=180°-70°=110°. 17.(1)画图见解析;(2)画图见解析;(3)平行且相等;(4)12;(5)9 【分析】 (1)利用网格特点和平移的性质分别画出点A、B、C的对应点A′、B′、C′即可得到△A′B′C′; (2)找出线段A′C′的中点E′,连接B′E′; (3)根据平移的性质求解; (4)由于线段AB扫过的部分为平行四边形,则根据平行四边形的面积公式可求解. (5)根据同底等高面积相等可知共有9个点. 【详解】 (1)△A′B′C′如图所示; (2)B′D′如图所示; (3)BB′∥CC′,BB′=CC′; (4)线段AB扫过的面积=4×3=12; (5)有9个点. 【点睛】 本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 18.(1)6;(2)8. 【分析】 (1)先将原式转化为(a+b)2-2ab,再将已知代入计算可得; (2)先将原式转化为(a+b)2-4ab,再将已知代入计算计算可得. 【详解】 解:(1)当a+b=2,ab=-1时, 原式=(a+b)2-2ab =22-2×(-1) =4+2 =6; (2)当a+b=2,ab=-1时, 原式=(a+b)2-4ab =22-4×(-1) =4+4 =8. 【点睛】 本题主要考查完全平方公式的变形求值问题,解题的关键是熟练掌握完全平方公式及其灵活变形. 19.(1)0;(2)﹣5a2+6ab﹣8b2. 【分析】 (1)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果; (2)原式利用平方出根是,以及完全平方公式化简,去括号合并即可得到结果. 【详解】 解:(1)原式=﹣4x4y2+4x4y2 =0; (2)原式=﹣4a2+b2﹣(a2﹣6ab+9b2) =﹣4a2+b2﹣a2+6ab﹣9b2 =﹣5a2+6ab﹣8b2. 【点睛】 此题考查了整式的混合运算,熟练掌握运算法则及公式是解本题的关键. 20.角平分线的定义,∠3,等量代换,DE,BC,内错角相等,两直线平行,∠C,两直线平行,同位角相等 【分析】 先根据角平分线的定义,得出∠1=∠3,再根据等量代换,得出∠3=∠2,最后根据平行线的判定与性质得出结论. 【详解】 证明:∵BE平分∠ABC(已知) ∴∠1=∠3 ( 角平分线的定义) 又∵∠1=∠2(已知) ∴∠3=∠2 ( 等量代换) ∴DE∥BC( 内错角相等,两直线平行) ∴∠AED=∠C( 两直线平行,同位角相等) 【点睛】 本题主要考查了平行线的判定与性质,解题时注意:内错角相等,两直线平行;两直线平行,同位角相等.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学 期末 复习 压轴 解答 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文