七年级下册呼和浩特数学期末试卷达标检测(Word版-含解析).doc
《七年级下册呼和浩特数学期末试卷达标检测(Word版-含解析).doc》由会员分享,可在线阅读,更多相关《七年级下册呼和浩特数学期末试卷达标检测(Word版-含解析).doc(23页珍藏版)》请在咨信网上搜索。
七年级下册呼和浩特数学期末试卷达标检测(Word版 含解析) 一、选择题 1.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( ) A.∠2 和∠4 B.∠6和∠4 C.∠2 和∠6 D.∠6和∠3 2.下列是四个汽车标志图案,其中可看作由“基本图案”经过平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中,点(﹣3,2)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中假命题有( ) ①两条直线被第三条直线所截,同位角相等 ②如果两条直线都与第三条直线平行,那么这两条直线也互相平行 ③点到直线的垂线段叫做点到直线的距离 ④过一点有且只有一条直线与已知直线平行 ⑤若两条直线都与第三条直线垂直,则这两条直线互相平行. A.5个 B.4个 C.3个 D.2个 5.直线,直线与,分别交于点,,.若,则的度数为( ) A. B. C. D. 6.下列说法正确的是( ) A.9的立方根是3 B.算术平方根等于它本身的数一定是1 C.﹣2是4的一个平方根 D.的算术平方根是2 7.如图,在中,交AC于点E,交BC于点F,连接DC,,,则的度数是( ) A.42° B.38° C.40° D.32° 8.在平面直角坐标系中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A4的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(2,4),点A2021的坐标为( ) A.(-3,3) B.(-2,2) C.(3,-1) D.(2,4) 二、填空题 9.若则 ________. 10.若点P(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点是P ,若点P的坐标为(-3,4),则a=_____,b=______ 11.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为_____. 12.如图,已知AB∥CD,如果∠1=100°,∠2=120°,那么∠3=_____度. 13.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为 ___. 14.如图,数轴上,两点表示的数分别为和4.1,则,两点之间表示整数的点共有____个. 15.已知点A(0,1),B(0 ,2),点C在x轴上,且,则点C的坐标________. 16.如图,在平面直角坐标系中,三角形,三角形,三角形都是斜边在轴上,斜边长分别为2,4,6,…的等腰直角三角形.若三角形的顶点坐标分别为,,,则按图中规律,点的坐标为______. 三、解答题 17.计算(每小题4分) (1) (2). (3). (4)+|﹣2 | + ( -1 )2017 18.求下列各式中的值: (1);(2);(3). 19.如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H,∠3+∠4=180°,试说明∠1=∠2(请通过填空完善下列推理过程) 解:∵∠3+∠4=180°(已知),∠FHD=∠4( ). ∴∠3+∠FHD=180°(等量代换). ∴FG∥BD( ). ∴∠1= (两直线平行,同位角相等). ∵BD平分∠ABC, ∴∠ABD= (角平分线的定义). ∴∠1=∠2(等量代换). 20.将△ABO向右平移4个单位,再向下平移1个单位,得到三角形A′B′O′ (1)请画出平移后的三角形A′B′O′. (2)写出点A′、O′的坐标. 21.阅读下面文字,然后回答问题. 给出定义:一个实数的整数部分是不大于这个数的最大数,这个实数的小数部分为这个数与它的整数部分的差的绝对值.例如:2.4的整数部分为2,小数部分为;的整数部分为1,小数部分可用表示;再如,﹣2.6的整数部分为﹣3,小数部分为.由此我们得到一个真命题:如果,其中是整数,且,那么,. (1)如果,其中是整数,且,那么______,_______; (2)如果,其中是整数,且,那么______,______; (3)已知,其中是整数,且,求的值; (4)在上述条件下,求的立方根. 二十二、解答题 22.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3) 二十三、解答题 23.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH. (1)如图1,求证:GFEH; (2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明. 24.如图1,为直线上一点,过点作射线,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方,将图1中的三角板绕点以每秒3°的速度沿顺时针方向旋转一周. (1)几秒后与重合? (2)如图2,经过秒后,,求此时的值. (3)若三角板在转动的同时,射线也绕点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间与重合?请画图并说明理由. (4)在(3)的条件下,求经过多长时间平分?请画图并说明理由. 25.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系? (特殊化) (1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数; (2)当∠1=70°,求∠EPB的度数; (一般化) (3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示). 26.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处. (1)若,________. (2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论. ②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明. (3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________. 【参考答案】 一、选择题 1.A 解析:A 【分析】 同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,根据此定义即可得出答案. 【详解】 解:∵直线AD,BE被直线BF和AC所截, ∴∠1与∠2是同位角,∠5与∠4是内错角, 故选A. 【点睛】 本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义. 2.B 【分析】 根据平移的概念观察即可 【详解】 解:由“基本图案”经过旋转得到 由“基本图案”经过平移得到 由“基本图案”经过翻折得到 不能由 “基本图案”经过平移得到 故选:B 【点睛】 本题考查 解析:B 【分析】 根据平移的概念观察即可 【详解】 解:由“基本图案”经过旋转得到 由“基本图案”经过平移得到 由“基本图案”经过翻折得到 不能由 “基本图案”经过平移得到 故选:B 【点睛】 本题考查平移的概念,考查观察能力 3.B 【分析】 根据各象限内点的坐标特征解答即可. 【详解】 解:点在第二象限, 故选:B. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限. 4.B 【分析】 根据平行线的性质和判定,点到直线距离定义一一判断即可. 【详解】 解:①两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件; ②如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确; ③点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度; ④过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点; ⑤若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内. 故选B. 【点睛】 本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义. 5.B 【分析】 由对顶角相等得∠DFE=55°,然后利用平行线的性质,得到∠BEF=125°,即可求出的度数. 【详解】 解:由题意,根据对顶角相等,则 , ∵, ∴, ∴, ∵, ∴, ∴; 故选:B. 【点睛】 本题考查了平行线的性质,对顶角相等,解题的关键是掌握平行线的性质,正确的求出. 6.C 【解析】 【分析】 利用立方根、平方根和算术平方根的定义进行判断即可. 【详解】 解:9的立方根是,故A项错误; 算术平方根等于它本身的数是1和0,故B项错误; ﹣2是4的一个平方根,故C项正确; 的算术平方根是,故D项错误; 故选C. 【点睛】 本题考查了平方根、算术平方根和立方根,熟练掌握各自的定义是解题的关键. 7.D 【分析】 由可得到与的关系,利用三角形的外角与内角的关系可得结论. 【详解】 解:,, . ,, . 故选:. 【点睛】 本题考查了平行线的性质与三角形的外角性质,掌握“三角形的外角等于与它不相邻的两个内角和”是解决本题的关键. 8.D 【分析】 根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:∵A1的坐标为(2,4), ∴ 解析:D 【分析】 根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:∵A1的坐标为(2,4), ∴A2(﹣3,3),A3(﹣2,﹣2),A4(3,﹣1),A5(2,4), …, 依此类推,每4个点为一个循环组依次循环, ∵2021÷4=505……1, ∴点A2021的坐标与A1的坐标相同,为(2,4). 故选:D. 【点睛】 本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键. 二、填空题 9.【分析】 根据平方与二次根式的非负性即可求解. 【详解】 依题意得2a+3=0.b-2=0, 解得a=-,b=2, ∴== 【点睛】 此题主要考查实数的性质,解题的关键是熟知实数的性质. 解析: 【分析】 根据平方与二次根式的非负性即可求解. 【详解】 依题意得2a+3=0.b-2=0, 解得a=-,b=2, ∴== 【点睛】 此题主要考查实数的性质,解题的关键是熟知实数的性质. 10.a=3 b=-4 【分析】 先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值 【详解】 由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(- 解析:a=3 b=-4 【分析】 先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值 【详解】 由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4), 点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4), 则a=3,b=-4. 【点睛】 此题考查关于x轴、y轴对称的点的坐标,难度不大 11.4cm 【详解】 ∵BC=10cm,BD:DC=3:2, ∴BD=6cm,CD=4cm, ∵AD是△ABC的角平分线,∠ACB=90°, ∴点D到AB的距离等于DC,即点D到AB的距离等于4cm. 解析:4cm 【详解】 ∵BC=10cm,BD:DC=3:2, ∴BD=6cm,CD=4cm, ∵AD是△ABC的角平分线,∠ACB=90°, ∴点D到AB的距离等于DC,即点D到AB的距离等于4cm. 12.40 【分析】 过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数. 【详解】 解:如图:过作平行于, , , , ,即, . 故答案为:40. 【 解析:40 【分析】 过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数. 【详解】 解:如图:过作平行于, , , , ,即, . 故答案为:40. 【点睛】 此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键. 13.95° 【分析】 首先利用平行线的性质得出∠BMF=100°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数. 解析:95° 【分析】 首先利用平行线的性质得出∠BMF=100°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数. 【详解】 解:∵MF∥AD,FN∥DC,∠A=100°,∠C=70°, ∴∠BMF=100°,∠FNB=70°, ∵将△BMN沿MN翻折,得△FMN, ∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°, ∴∠F=∠B=180°−50°−35°=95°, ∴∠D=360°−100°−70°−95°=95°. 故答案为:95°. 【点睛】 此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键. 14.3 【分析】 根据无理数的估算、结合数轴求解即可 【详解】 解: ∴ ∴ ∴在到4.1之间由2,3,4这三个整数 故答案为:3. 【点睛】 本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是 解析:3 【分析】 根据无理数的估算、结合数轴求解即可 【详解】 解: ∴ ∴ ∴在到4.1之间由2,3,4这三个整数 故答案为:3. 【点睛】 本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解题关键. 15.(4,0)或(﹣4,0) 【详解】 试题解析:设C点坐标为(|x|,0) ∴ 解得:x=±4 所以,点C的坐标为(4,0)或(-4,0). 解析:(4,0)或(﹣4,0) 【详解】 试题解析:设C点坐标为(|x|,0) ∴ 解得:x=±4 所以,点C的坐标为(4,0)或(-4,0). 16.【分析】 根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可. 【详解】 解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边 解析: 【分析】 根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可. 【详解】 解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6 ∴A7A9=8,A5A7=6,A3A5=4 ∴A3A7= A5A7- A3A5=2 ∴A3A7= A7A9- A3A7=6 又∵A3与原点重合 ∴A9的坐标为(6,0) 故答案为:(6,0). 【点睛】 本题主要考查了坐标与图形的变化,解题的关键在于能够准确从图形中获取信息求解. 三、解答题 17.(1)0;(2);(3)1;(4)3. 【分析】 (1)先算根号和平方,再根据实数的加减运算计算即可得出答案; (2)先去绝对值,再根据实数的加减运算法则计算即可得出答案; (3)先算绝对值、立方根 解析:(1)0;(2);(3)1;(4)3. 【分析】 (1)先算根号和平方,再根据实数的加减运算计算即可得出答案; (2)先去绝对值,再根据实数的加减运算法则计算即可得出答案; (3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案; (4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案. 【详解】 解:(1)原式=-3+4-3 =-2 (2)原式= = (3)原式=2+(-2)+1 =1 (4)原式=2+2-1 =3 【点睛】 本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则. 18.(1);(2);(3) 【分析】 直接根据平方根的定义逐个解答即可. 【详解】 解:(1)∵, ∴; (2)∵, ∴, ∴; (3)∵, ∴, ∴. 【点睛】 此题主要考查了平方根的定义,熟练掌握平 解析:(1);(2);(3) 【分析】 直接根据平方根的定义逐个解答即可. 【详解】 解:(1)∵, ∴; (2)∵, ∴, ∴; (3)∵, ∴, ∴. 【点睛】 此题主要考查了平方根的定义,熟练掌握平方根的定义是解题关键. 19.对顶角相等,∠FHD,同旁内角互补,两直线平行,∠ABD,两直线平行,同位角相等,∠2. 【分析】 求出∠3+∠FHD=180°,根据平行线的判定得出FG∥BD,根据平行线的性质得出∠1=∠ABD, 解析:对顶角相等,∠FHD,同旁内角互补,两直线平行,∠ABD,两直线平行,同位角相等,∠2. 【分析】 求出∠3+∠FHD=180°,根据平行线的判定得出FG∥BD,根据平行线的性质得出∠1=∠ABD,根据角平分线的定义得出∠ABD=∠2即可. 【详解】 解:∵∠3+∠4=180°(已知),∠FHD=∠4(对顶角相等), ∴∠3+∠FHD=180°(等量代换), ∴FG∥BD(同旁内角互补,两直线平行), ∴∠1=∠ABD(两直线平行,同位角相等), ∵BD平分∠ABC, ∴∠ABD=∠2(角平分线的定义), ∴∠1=∠2(等量代换), 故答案为:对顶角相等,∠FHD,同旁内角互补,两直线平行,∠ABD,两直线平行,同位角相等,∠2. 【点睛】 本题主要考查了平行线的性质和判定,角平分线的定义,能灵活运用平行线的性质和判定定理进行推理是解此题的关键. 20.(1)见解析;(2)A′,O′ 【分析】 (1)分别作出A,B,O的对应点A′,B′,O′即可. (2)根据点的位置写出坐标即可. 【详解】 解:(1)如图,△A′B′O′即为所求作. (2)A′( 解析:(1)见解析;(2)A′,O′ 【分析】 (1)分别作出A,B,O的对应点A′,B′,O′即可. (2)根据点的位置写出坐标即可. 【详解】 解:(1)如图,△A′B′O′即为所求作. (2)A′(2,1),O′(4,−1). 【点睛】 本题考查作图−平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型. 21.(1)2,;(2)﹣3,;(3);(4)3 【分析】 (1)先估算的大小,再依据定义分别取整数部分和小数部分即可; (2)先估算的大小,再依据定义分别取整数部分和小数部分即可; (3)先估算的大小, 解析:(1)2,;(2)﹣3,;(3);(4)3 【分析】 (1)先估算的大小,再依据定义分别取整数部分和小数部分即可; (2)先估算的大小,再依据定义分别取整数部分和小数部分即可; (3)先估算的大小,分别求得的值,再代入绝对值中计算即可; (4)根据前三问的结果,代入代数式求值,最后求立方根即可. 【详解】 (1), , , , 故答案为:2,,; (2) , , , 故答案为:﹣3,; (3), , , , ,, ; (4), , 27的立方根为3, 即的立方根为3. 【点睛】 本题考查了实数的运算,无理数的估算,绝对值计算,立方根,理解题意是解题的关键. 二十二、解答题 22.选择建成圆形草坪的方案,理由详见解析 【分析】 根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答 解析:选择建成圆形草坪的方案,理由详见解析 【分析】 根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案. 【详解】 解:选择建成圆形草坪的方案,理由如下: 设建成正方形时的边长为x米, 由题意得:x2=81, 解得:x=±9, ∵x>0, ∴x=9, ∴正方形的周长为4×9=36, 设建成圆形时圆的半径为r米, 由题意得:πr2=81. 解得:, ∵r>0. ∴, ∴圆的周长=, ∵, ∴, ∴建成圆形草坪时所花的费用较少, 故选择建成圆形草坪的方案. 【点睛】 本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键. 二十三、解答题 23.(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详 解析:(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详解】 (1)证明:, , , , ; (2)解:,理由如下: 如图2,过点作,过点作, , , ,, , 同理,, 平分,平分, ,, , 由(1)知,, , , , , . 【点睛】 此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键. 24.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析 【分析】 (1)用角的度数除以转动速度即可得; (2)求出∠AON=60°,结合旋转速度可得时间t; (3)设∠AON=3 解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析 【分析】 (1)用角的度数除以转动速度即可得; (2)求出∠AON=60°,结合旋转速度可得时间t; (3)设∠AON=3t,则∠AOC=30°+6t,由题意列出方程,解方程即可; (4)根据转动速度关系和OC平分∠MOB,由题意列出方程,解方程即可. 【详解】 解:(1)∵30÷3=10, ∴10秒后ON与OC重合; (2)∵MN∥AB ∴∠BOM=∠M=30°, ∵∠AON+∠BOM=90°, ∴∠AON=60°, ∴t=60÷3=20 ∴经过t秒后,MN∥AB,t=20秒. (3)如图3所示: ∵∠AON+∠BOM=90°,∠BOC=∠BOM, ∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转, 设∠AON=3t,则∠AOC=30°+6t, ∵OC与OM重合, ∵∠AOC+∠BOC=180°, 可得:(30°+6t)+(90°-3t)=180°, 解得:t=20秒; 即经过20秒时间OC与OM重合; (4)如图4所示: ∵∠AON+∠BOM=90°,∠BOC=∠COM, ∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转, 设∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°, ∴∠BOC=∠COM=∠BOM=(90°-3t), 由题意得:180°-(30°+6t)=( 90°-3t), 解得:t=秒, 即经过秒OC平分∠MOB. 【点睛】 此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键. 25.(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当 解析:(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|. 【分析】 (1)利用外角和角平分线的性质直接可求解; (2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解; (3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时; 【详解】 解:(1)∵BD平分∠ABC, ∴∠ABD=∠DBC=∠ABC=50°, ∵∠EPB是△PFB的外角, ∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°; (2)①当交点P在直线b的下方时: ∠EPB=∠1﹣50°=20°; ②当交点P在直线a,b之间时: ∠EPB=50°+(180°﹣∠1)=160°; ③当交点P在直线a的上方时: ∠EPB=∠1﹣50°=20°; (3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|; ②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|; 【点睛】 考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口. 26.(1)50°;(2)①见解析;②见解析;(3)360°. 【分析】 (1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ 解析:(1)50°;(2)①见解析;②见解析;(3)360°. 【分析】 (1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠AEB和∠ADC得:∠1+∠2等于360°与四个折叠角的差,化简得结果; ②利用两次外角定理得出结论; (3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解. 【详解】 解:(1)∵,, ∴∠A′=∠A=180°-(65°+70°)=45°, ∴∠A′ED+∠A′DE =180°-∠A′=135°, ∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°; (2)①,理由如下 由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED, ∵∠AEB+∠ADC=360°, ∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED, ∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A; ②,理由如下: ∵是的一个外角 ∴. ∵是的一个外角 ∴ 又∵ ∴ (3)如图 由题意知, ∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A') 又∵∠B=∠B',∠C=∠C',∠A=∠A', ∠A+∠B+∠C=180°, ∴∠1+∠2+∠3+∠4+∠5+∠6=360°. 【点睛】 题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 呼和浩特 数学 期末试卷 达标 检测 Word 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文