人教版七7年级下册数学期末综合复习(附答案).doc
《人教版七7年级下册数学期末综合复习(附答案).doc》由会员分享,可在线阅读,更多相关《人教版七7年级下册数学期末综合复习(附答案).doc(25页珍藏版)》请在咨信网上搜索。
人教版七7年级下册数学期末综合复习(附答案) 一、选择题 1.下列图形中,和不是内错角的是( ) A. B. C. D. 2.下列对象中不属于平移的是( ) A.在平坦雪地上滑行的滑雪运动员 B.上上下下地迎送来客的电梯 C.一棵倒映在湖中的树 D.在笔直的铁轨上飞驰而过的火车 3.在平面直角坐标系中,点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中是假命题的是( ) A.对顶角相等 B.在同一平面内,垂直于同一条直线的两条直线平行 C.同旁内角互补 D.平行于同一条直线的两条直线平行 5.如图,一副直角三角板图示放置,点在的延长线上,点在边上,,,则( ) A. B. C. D. 6.对于有理数a.b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,当b<a时,min{a,b}=b.例如:min{1,﹣2}=﹣2,已知min{,a}=a,min{,b}=,且a和b为两个连续正整数,则a﹣b的立方根为( ) A.﹣1 B.1 C.﹣2 D.2 7.已知直线,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=25°,则∠2的度数为( ) A.55° B.45° C.30° D.25° 8.如图,长方形的各边分别平行于轴、轴,物体甲和物体乙由点同时出发,沿长方形的边做环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动则两个物体运动后的第2021次相遇地点的坐标是( ) A. B. C. D. 九、填空题 9.49的算术平方根是___. 十、填空题 10.将点先关于x轴对称,再关于y轴对称的点的坐标为_______. 十一、填空题 11.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠BFD=45°;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的结论是______(填序号). 十二、填空题 12.如图,已知AB∥CD,如果∠1=100°,∠2=120°,那么∠3=_____度. 十三、填空题 13.如图,把一张长方形纸片沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若,则____________,____________. 十四、填空题 14.下列命题中,属于真命题的有______(填序号):①互补的角是邻补角;②无理数是无限不循环小数;③同位角相等;④两条平行线的同旁内角的角平分线互相垂直;⑤如果,那么. 十五、填空题 15.点关于轴的对称点的坐标是_______. 十六、填空题 16.在平面直角坐标系中,已知点,,,且,下列结论:①轴,②将点A先向右平移5个单位,再向下平移个单位可得到点;③若点在直线上,则点的横坐标为3;④三角形的面积为,其中正确的结论是___________(填序号). 十七、解答题 17.计算题: (1); (2) 十八、解答题 18.求下列各式中的x值. (1) (2) 十九、解答题 19.如图,∠1+∠2=180°,∠C=∠D.求证:ADBC. 证明:∵∠1+∠2=180°,∠2+∠AED=180°, ∴∠1=∠AED( ), ∴AC ( ), ∴∠D=∠DAF( ). ∵∠C=∠D, ∴∠DAF= (等量代换). ∴ADBC( ). 二十、解答题 20.如图, 在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC向上平移 3 个单位长度,再向左平移1个单位长度得到三角形,点A、B、C的对应点分别为. (1)在图中画出平移后的三角形; (2)写出点的坐标; (3)三角形ABC的面积为 . 二十一、解答题 21.解下列问题: (1)已知;求的值. (2)已知的小数部分为的整数部分为,求的值. 二十二、解答题 22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件. (1)求正方形工料的边长; (2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,) 二十三、解答题 23.已知,AB∥CD,点E为射线FG上一点. (1)如图1,若∠EAF=25°,∠EDG=45°,则∠AED= . (2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论; (3)如图3,当点E在FG延长线上时,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度数. 二十四、解答题 24.已知:如图1,,点,分别为,上一点. (1)在,之间有一点(点不在线段上),连接,,探究,,之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明. (2)如图2,在,之两点,,连接,,,请选择一个图形写出,,,存在的数量关系(不需证明). 二十五、解答题 25.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系? (特殊化) (1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数; (2)当∠1=70°,求∠EPB的度数; (一般化) (3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示). 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据内错角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角解答. 【详解】 解:A、∠1和∠2是内错角,故选项不合题意; B、∠1和∠2不是内错角,故选项符合题意; C、∠1和∠2是内错角,故选项不合题意; D、∠1和∠2是内错角,故选项不合题意; 故选B. 【点睛】 本题考查了“三线八角”问题,确定三线八角的关键是从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义. 2.C 【分析】 根据平移的性质,对选项进行一一分析,利用排除法求解. 【详解】 解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移; B、电梯上上下下地迎送来客,符合平移的性质,故属于平移 解析:C 【分析】 根据平移的性质,对选项进行一一分析,利用排除法求解. 【详解】 解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移; B、电梯上上下下地迎送来客,符合平移的性质,故属于平移; C、一棵树倒映在湖中,山与它在湖中的像成轴对称,故不属于平移; D、火车在笔直的铁轨上飞弛而过,符合平移的性质,故属于平移; 故选:C. 【点睛】 本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或轴对称. 3.B 【分析】 根据各象限内点的坐标特征解答即可. 【详解】 解:点A(-3,2)在第二象限, 故选:B. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.C 【分析】 利用对顶角相等、平行线的判定与性质进行判断选择即可. 【详解】 解:A、对顶角相等,是真命题,不符合题意; B、在同一平面内,垂直于同一条直线的两条直线平行,是真命题,不符合题意; C、同旁内角互补,是假命题,符合题意; D、平行于同一条直线的两条直线平行,真命题,不符合题意, 故选:C. 【点睛】 本题考查判断命题的真假,解答的关键是熟练掌握对顶角相等、平行线的判定与性质等知识,难度不大. 5.B 【分析】 根据平行线的性质可知, ,由 即可得出答案。 【详解】 解:∵ ∴, ∵ ∴ ∴ 故答案是B 【点睛】 本题主要考查了平行线的性质:(1)两直线平行,同位角相等(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补. 6.A 【分析】 根据a,b的范围即可求出a−b的立方根. 【详解】 解:根据题意得:a≤,b≥, ∵25<30<36, ∴5<<6, ∵a和b为两个连续正整数, ∴a=5,b=6, ∴a﹣b=﹣1, ∴﹣1的立方根是﹣1, 故选:A. 【点睛】 本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键. 7.A 【分析】 易求的度数,再利用平行线的性质即可求解. 【详解】 解:,, , 直线, , 故选:A. 【点睛】 本题主要考查平行线的性质,掌握平行线的性质是解题的关键. 8.A 【分析】 根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律. 【详解】 解:由已知,矩形周长为12, ∵甲、乙速度分别为1单位/秒,2单位/秒 则两个物体 解析:A 【分析】 根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律. 【详解】 解:由已知,矩形周长为12, ∵甲、乙速度分别为1单位/秒,2单位/秒 则两个物体每次相遇时间间隔为秒, 则两个物体相遇点依次为(-1,1)、(-1,-1)、(2,0), ∵2021=3×673+2, ∴第2021次两个物体相遇位置为(-1,-1), 故选:A. 【点睛】 本题为平面直角坐标系内的动点坐标规律探究题,解答关键是找到两个物体相遇的位置的变化规律. 九、填空题 9.7 【详解】 试题分析:因为,所以49的算术平方根是7. 故答案为7. 考点:算术平方根的定义. 解析:7 【详解】 试题分析:因为,所以49的算术平方根是7. 故答案为7. 考点:算术平方根的定义. 十、填空题 10.(1,-4) 【分析】 直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数.关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解. 【详解】 设关于x轴对称的点为 则点的坐标为 解析:(1,-4) 【分析】 直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数.关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解. 【详解】 设关于x轴对称的点为 则点的坐标为(-1,-4) 设点和点关于y轴对称 则的坐标为(1,-4) 故答案为:(1,-4) 【点睛】 本题考查了关于坐标轴对称的点的坐标特征,关于x轴对称的两点,横坐标相同,纵坐标互为相反数,关于y轴对称的两点,纵坐标相同,横坐标互为相反数. 十一、填空题 11.①②③. 【分析】 由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠B 解析:①②③. 【分析】 由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠BFD=∠BCF+∠CBF=45°,可判定②;根据同角的余角性质可得∠GCE=∠ABC,由角的和差∠GCD=∠ABC+∠ACD=∠ADC,可判定③;由∠GCE+∠ACB=90°,可得∠GCE与∠ACB互余,可得CA平分∠BCG不正确,可判定④. 【详解】 解:∵EG∥BC,且CG⊥EG于G, ∴∠BCG+∠G=180°, ∵∠G=90°, ∴∠BCG=180°﹣∠G=90°, ∵GE∥BC, ∴∠GEC=∠BCA, ∵CD平分∠BCA, ∴∠GEC=∠BCA=2∠DCB, ∴①正确. ∵CD,BE平分∠BCA,∠ABC ∴∠BFD=∠BCF+∠CBF=(∠BCA+∠ABC)=45°, ∴②正确. ∵∠GCE+∠ACB=90°,∠ABC+∠ACB=90°, ∴∠GCE=∠ABC, ∵∠GCD=∠GCE+∠ACD=∠ABC+∠ACD,∠ADC=∠ABC+∠BCD, ∴∠ADC=∠GCD, ∴③正确. ∵∠GCE+∠ACB=90°, ∴∠GCE与∠ACB互余, ∴CA平分∠BCG不正确, ∴④错误. 故答案为:①②③. 【点睛】 本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键. 十二、填空题 12.40 【分析】 过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数. 【详解】 解:如图:过作平行于, , , , ,即, . 故答案为:40. 【 解析:40 【分析】 过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数. 【详解】 解:如图:过作平行于, , , , ,即, . 故答案为:40. 【点睛】 此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键. 十三、填空题 13.68°; 112°. 【分析】 首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数. 【详解】 解:∵延折叠得到, 解析:68°; 112°. 【分析】 首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数. 【详解】 解:∵延折叠得到, ∴, ∵,, ∴(两直线平行,内错角相等), ∴, ∴, 又∵, ∴, ∴. 综上,. 故答案为:68°;112°. 【点睛】 本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键. 十四、填空题 14.②④⑤ 【分析】 根据邻补角、无理数、平行线的性质和平方根进行判断即可. 【详解】 解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题; ②无理数是无限不循环小数,正确,是真命题; ③ 解析:②④⑤ 【分析】 根据邻补角、无理数、平行线的性质和平方根进行判断即可. 【详解】 解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题; ②无理数是无限不循环小数,正确,是真命题; ③两直线平行,同位角相等,故错误,是假命题; ④如图所示,直线a,b被直线c所截,且a//b,直线AB平分∠CAE,直线CD平分∠ACF,AB,CD相交于点G.求证:AB⊥CD. 证明:∵a//b, ∴∠CAE+∠ACF=180°. 又AB平分∠CAE,CD平分∠ACF, 所以∠1=∠CAE,∠2=∠ACF. 所以∠1+∠2=∠CAE+∠ACF =(∠CAE+∠ACF)=×180°=90°. 又∵△ACG的内角和为180°, ∴∠AGC=180°-(∠1+∠2)=180°-90°=90°, ∴AB⊥CD. ∴两条平行线的同旁内角的角平分线互相垂直,正确,是真命题; ⑤如果,那么,正确,是真命题. 故答案为:②④⑤. 【点睛】 此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理. 十五、填空题 15.【分析】 根据点关于轴的对称点的坐标的特征,即可写出答案. 【详解】 解:∵点关于轴的对称点为, ∴点的纵坐标与点的纵坐标相同, 点的横坐标是点的横坐标的相反数, 故点的坐标为:, 故答案为:. 解析: 【分析】 根据点关于轴的对称点的坐标的特征,即可写出答案. 【详解】 解:∵点关于轴的对称点为, ∴点的纵坐标与点的纵坐标相同, 点的横坐标是点的横坐标的相反数, 故点的坐标为:, 故答案为:. 【点睛】 本题考查了与直角坐标系相关的知识,理解点关于轴的对称点的坐标的特征(纵坐标相等,横坐标是其相反数)是解题的关键. 十六、填空题 16.①③④ 【分析】 ①两点纵坐标相同,得到 AB //x轴,即可判断; ②根据平移规律求得平移后的点的坐标,即可判断; ③根据两点的坐标特征可知直线BCx轴,即可判断; ④求得三角形的面积,即可判断. 解析:①③④ 【分析】 ①两点纵坐标相同,得到 AB //x轴,即可判断; ②根据平移规律求得平移后的点的坐标,即可判断; ③根据两点的坐标特征可知直线BCx轴,即可判断; ④求得三角形的面积,即可判断. 【详解】 解:A(-2,4),B(3,4),它们的纵坐标相同, AB //x轴, 故①正确; 将点A 先向右平移 5 个单位,再向下平移m个单位可得到点(3,4-m), 故②错误; B(3,4),C(3,m),它们的横坐标相同, BC x轴, 点 D 在直线BC上, 点 D的横坐标为 3, 故③正确; 点A(-2,4),B(3, 4),C(3,m),且m<4, AB =5,C 点到 AB 的距离为(4-m), 三角形 ABC 的面积为, 故④正确; 故答案为:①③④. 【点睛】 本题考查了平行线的判定,坐标和图形变化,平移以及点的坐标特征,明确线段的位置和大小是解题的关键. 十七、解答题 17.(1);(2) 【分析】 (1)先计算被开方数,再利用算术平方根的含义求解即可得到答案; (2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案. 【详解】 解 解析:(1);(2) 【分析】 (1)先计算被开方数,再利用算术平方根的含义求解即可得到答案; (2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案. 【详解】 解:(1), (2) 【点睛】 本题考查的是算术平方根的含义,含乘方的有理数的混合运算,掌握以上知识是解题的关键. 十八、解答题 18.(1);(2)x=5. 【详解】 分析:(1)先移项,然后再求平方根即可; (2)先求x-1立方根,再求x即可. 详解:(1),∴; (2),∴x-1=4, ∴x=5. 点睛:本题考查了立方 解析:(1);(2)x=5. 【详解】 分析:(1)先移项,然后再求平方根即可; (2)先求x-1立方根,再求x即可. 详解:(1),∴; (2),∴x-1=4, ∴x=5. 点睛:本题考查了立方根和平方根的定义和性质,解题时牢记定义是关键,此题比较简单,易于掌握. 十九、解答题 19.同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;∠C;同位角相等,两直线平行. 【分析】 根据平行线的判定和性质定理即可得到结论. 【详解】 证明:,, (同角的补角相等), 解析:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;∠C;同位角相等,两直线平行. 【分析】 根据平行线的判定和性质定理即可得到结论. 【详解】 证明:,, (同角的补角相等), (内错角相等,两直线平行), (两直线平行,内错角相等), , (等量代换), (同位角相等,两直线平行). 故答案为:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;;同位角相等,两直线平行. 【点睛】 本题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“同位角相等,两直线平行”及“两直线平行,内错角相等”是解题的关键. 二十、解答题 20.(1)见解析;(2);(3) 【分析】 (1)根据平移规律确定,,的坐标,再连线即为平移后的三角形; (2)根据平移规律写出的坐标即可; (3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面 解析:(1)见解析;(2);(3) 【分析】 (1)根据平移规律确定,,的坐标,再连线即为平移后的三角形; (2)根据平移规律写出的坐标即可; (3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面积即可. 【详解】 (1)如图所示,三角形即为所求; (2)若把三角形ABC向上平移 3 个单位长度,再向左平移1个单位长度得到三角形,点的坐标为(-3,1); (3)三角形ABC的面积为:4×5-×2×4-×1×3-×3×5=7. 【点睛】 本题主要考查了图形的平移,以及三角形在坐标轴上的计算,切割法的运用,掌握平移规律和运用切割法求面积是解题的关键. 二十一、解答题 21.(1);(2). 【分析】 (1)直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案; (2)直接估算无理数的取值范围得出a,b的值,进而得出答案. 【详解】 原式 . 解析:(1);(2). 【分析】 (1)直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案; (2)直接估算无理数的取值范围得出a,b的值,进而得出答案. 【详解】 原式 . 【点睛】 此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键. 二十二、解答题 22.(1)6分米;(2)满足. 【分析】 (1)由正方形面积可知,求出的值即可; (2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可. 【详解】 解:( 解析:(1)6分米;(2)满足. 【分析】 (1)由正方形面积可知,求出的值即可; (2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可. 【详解】 解:(1)正方形工料的边长为分米; (2)设长方形的长为4a分米,则宽为3a分米. 则, 解得:, 长为,宽为 ∴满足要求. 【点睛】 本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题. 二十三、解答题 23.(1)70°;(2),证明见解析;(3)122° 【分析】 (1)过作,根据平行线的性质得到,,即可求得; (2)过过作,根据平行线的性质得到,,即; (3)设,则,通过三角形内角和得到,由角平分线 解析:(1)70°;(2),证明见解析;(3)122° 【分析】 (1)过作,根据平行线的性质得到,,即可求得; (2)过过作,根据平行线的性质得到,,即; (3)设,则,通过三角形内角和得到,由角平分线定义及得到,求出的值再通过三角形内角和求. 【详解】 解:(1)过作, , , ,, , 故答案为:; (2). 理由如下: 过作, , , ,, ,, ; (3), 设,则, ,, 又,, , 平分, , , , 即,解得, , . 【点睛】 本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键. 二十四、解答题 24.(1)见解析;(2)见解析 【分析】 (1)过点M作MP∥AB.根据平行线的性质即可得到结论; (2)根据平行线的性质即可得到结论. 【详解】 解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠E 解析:(1)见解析;(2)见解析 【分析】 (1)过点M作MP∥AB.根据平行线的性质即可得到结论; (2)根据平行线的性质即可得到结论. 【详解】 解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠EMF+∠MFC=360°. 证明:过点M作MP∥AB. ∵AB∥CD, ∴MP∥CD. ∴∠4=∠3. ∵MP∥AB, ∴∠1=∠2. ∵∠EMF=∠2+∠3, ∴∠EMF=∠1+∠4. ∴∠EMF=∠AEM+∠MFC; 证明:过点M作MQ∥AB. ∵AB∥CD, ∴MQ∥CD. ∴∠CFM+∠1=180°; ∵MQ∥AB, ∴∠AEM+∠2=180°. ∴∠CFM+∠1+∠AEM+∠2=360°. ∵∠EMF=∠1+∠2, ∴∠AEM+∠EMF+∠MFC=360°; (2)如图2第一个图:∠EMN+∠MNF-∠AEM-∠NFC=180°; 过点M作MP∥AB,过点N作NQ∥AB, ∴∠AEM=∠1,∠CFN=∠4,MP∥NQ, ∴∠2+∠3=180°, ∵∠EMN=∠1+∠2,∠MNF=∠3+∠4, ∴∠EMN+∠MNF=∠1+∠2+∠3+∠4,∠AEM+∠CFN=∠1+∠4, ∴∠EMN+∠MNF-∠AEM-∠NFC =∠1+∠2+∠3+∠4-∠1-∠4 =∠2+∠3 =180°; 如图2第二个图:∠EMN-∠MNF+∠AEM+∠NFC=180°. 过点M作MP∥AB,过点N作NQ∥AB, ∴∠AEM+∠1=180°,∠CFN=∠4,MP∥NQ, ∴∠2=∠3, ∵∠EMN=∠1+∠2,∠MNF=∠3+∠4, ∴∠EMN-∠MNF=∠1+∠2-∠3-∠4,∠AEM+∠CFN=180°-∠1+∠4, ∴∠EMN-∠MNF+∠AEM+∠NFC =∠1+∠2-∠3-∠4+180°-∠1+∠4 =180°. 【点睛】 本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键. 二十五、解答题 25.(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当 解析:(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|. 【分析】 (1)利用外角和角平分线的性质直接可求解; (2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解; (3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时; 【详解】 解:(1)∵BD平分∠ABC, ∴∠ABD=∠DBC=∠ABC=50°, ∵∠EPB是△PFB的外角, ∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°; (2)①当交点P在直线b的下方时: ∠EPB=∠1﹣50°=20°; ②当交点P在直线a,b之间时: ∠EPB=50°+(180°﹣∠1)=160°; ③当交点P在直线a的上方时: ∠EPB=∠1﹣50°=20°; (3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|; ②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|; 【点睛】 考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 期末 综合 复习 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文