初一数学下册期末几何压轴题试题(带答案).doc
《初一数学下册期末几何压轴题试题(带答案).doc》由会员分享,可在线阅读,更多相关《初一数学下册期末几何压轴题试题(带答案).doc(44页珍藏版)》请在咨信网上搜索。
一、解答题 1.如图,在平面直角坐标系中,已知△ABC,点A的坐标是(4,0),点B的坐标是(2,3),点C在x轴的负半轴上,且AC=6. (1)直接写出点C的坐标. (2)在y轴上是否存在点P,使得S△POB=S△ABC若存在,求出点P的坐标;若不存在,请说明理由. (3)把点C往上平移3个单位得到点H,作射线CH,连接BH,点M在射线CH上运动(不与点C、H重合).试探究∠HBM,∠BMA,∠MAC之间的数量关系,并证明你的结论. 2.如图,已知直线射线CD,.P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP.作,交直线AB于点F,CG平分. (1)若点P,F,G都在点E的右侧,求的度数; (2)若点P,F,G都在点E的右侧,,求的度数; (3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由. 3.已知,AB∥CD.点M在AB上,点N在CD上. (1)如图1中,∠BME、∠E、∠END的数量关系为: ;(不需要证明) 如图2中,∠BMF、∠F、∠FND的数量关系为: ;(不需要证明) (2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数; (3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数. 4.已知AB//CD. (1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D; (2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F. ①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数. ②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示) 5.如图1,已知直线m∥n,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB. (1)如图1,若∠OPQ=82°,求∠OPA的度数; (2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数; (3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由. 6.如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°. (1)如图1,若∠BCG=40°,求∠ABC的度数; (2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小; (3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的数量关系,并说明理由. 7.下列等式:,,,将以上三个等式两边分别相加得: . (1)观察发现:__________ . (2)初步应用:利用(1)的结论,解决以下问题“①把拆成两个分子为1的正的真分数之差,即 ;②把拆成两个分子为1的正的真分数之和,即 ; ( 3 )定义“”是一种新的运算,若,,,求的值. 8.对数运算是高中常用的一种重要运算,它的定义为:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=logaN,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,loga(M•N)=logaM+logaN. (I)解方程:logx4=2; (Ⅱ)log28= (Ⅲ)计算:(lg2)2+lg2•1g5+1g5﹣2018= (直接写答案) 9.阅读理解: 一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a代表这个整数分出来的左边数,b代表的这个整数分出来的中间数,c代表这个整数分出来的右边数,其中a,b,c数位相同,若b﹣a=c﹣b,我们称这个多位数为等差数. 例如:357分成了三个数3,5,7,并且满足:5﹣3=7﹣5; 413223分成三个数41,32,23,并且满足:32﹣41=23﹣32; 所以:357和413223都是等差数. (1)判断:148 等差数,514335 等差数;(用“是”或“不是”填空) (2)若一个三位数是等差数,试说明它一定能被3整除; (3)若一个三位数T是等差数,且T是24的倍数,求该等差数T. 10.对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,=3. (1)仿照以上方法计算:=______;=_____. (2)若,写出满足题意的x的整数值______. 如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1. (4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____. 11.对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,=3. (1)仿照以上方法计算:=______;=_____. (2)若,写出满足题意的x的整数值______. 如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1. (4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____. 12.阅读材料,回答问题: (1)对于任意实数x,符号表示“不超过x的最大整数”,在数轴上,当x是整数,就是x,当x不是整数时,是点x左侧的第一个整数点,如,,,,则________,________. (2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下: 里程范围 4公里以内(含4公里) 4-12公里以内(含12公里) 12-24公里以内(含24公里) 24公里以上 收费标准 2元 4公里/元 6公里/元 8公里/元 ①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元; ②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)? 13.已知,在平面直角坐标系中,AB⊥x轴于点B,点A满足,平移线段AB使点A与原点重合,点B的对应点为点C. (1)则a= ,b= ,点C坐标为 ; (2)如图1,点D(m,n)在线段BC上,求m,n满足的关系式; (3)如图2,E是线段OB上一动点,以OB为边作∠BOG=∠AOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值. 14.如图1,点在直线、之间,且. (1)求证:; (2)若点是直线上的一点,且,平分交直线于点,若,求的度数; (3)如图3,点是直线、外一点,且满足,,与交于点.已知,且,则的度数为______(请直接写出答案,用含的式子表示). 15.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16. (1)求点C的坐标. (2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴). (3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由. 16.如图,数轴上两点A、B对应的数分别是﹣1,1,点P是线段AB上一动点,给出如下定义:如果在数轴上存在动点Q,满足|PQ|=2,那么我们把这样的点Q表示的数称为连动数,特别地,当点Q表示的数是整数时我们称为连动整数. (1)﹣3,0,2.5是连动数的是 ; (2)关于x的方程2x﹣m=x+1的解满足是连动数,求m的取值范围 ; (3)当不等式组的解集中恰好有4个解是连动整数时,求a的取值范围. 17.如图,在平面直角坐标系中,四边形各顶点的坐标分别为,,,,现将四边形经过平移后得到四边形,点的对应点的坐标为. (1)请直接写点、、的坐标; (2)求四边形与四边形重叠部分的面积; (3)在轴上是否存在一点,连接、,使,若存在这样一点,求出点的坐标;若不存在,请说明理由. 18.如图1,以直角的直角顶点为原点,以,所在直线为轴和轴建立平面直角坐标系,点,,并且满足. (1)直接写出点,点的坐标; (2)如图1,坐标轴上有两动点,同时出发,点从点出发沿轴负方向以每秒2个单位长度的速度匀速运动,点从点出发沿轴正方向以每秒个单位长度的速度匀速运动,当点到达点整个运动随之结束;线段的中点的坐标是,设运动时间为秒.是否存在,使得与的面积相等?若存在,求出的值;若不存在,说明理由; (3)如图2,在(2)的条件下,若,点是第二象限中一点,并且平分,点是线段上一动点,连接交于点,当点在上运动的过程中,探究,,之间的数量关系,直接写出结论. 19.先阅读下面材料,再完成任务: 有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题: 已知实数,满足,……①,,……②,求和的值. 本题常规思路是将①②两式联立组成方程组,解得,的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得,由①+②×2可得,这样的解题思想就是通常所说的“整体思想” 解决问题: (1)已知二元一次方程组,则______,______; (2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元? (3)对于实数,,定义新运算:,其中,,是常数,等式右边是通常的加法和乘法运算.已知,,那么______. 20.判断下面方程组的解法是否正确,如果全部正确,判断即可;如果有错误,请写出正确的解题过程. 解:①×2-②×3,得,解得, 把代入方程①,得,解得. ∴原方程组的解为 21.某企业用规格是170cm×40cm的标准板材作为原材料,按照图①所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm). (1)求图中a、b的值; (2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图②所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计). ①一共可裁剪出甲型板材 张,乙型板材 张; ②恰好一共可以做出竖式和横式两种无盖装饰盒子多少个? 22.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等, B款瓷砖的长大于宽.已知一块A款瓷砖和-块B款瓷砖的价格和为140元; 3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题: (1)分别求出每款瓷砖的单价. (2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块? (3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案). 23.甲从A地出发步行到B地,乙同时从B地步行出发至A地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a千米/小时,乙刚出发的速度为b千米/小时. (1)A、B两地的距离可以表示为 千米(用含a,b的代数式表示); (2)甲从A到B所用的时间是: 小时(用含a,b的代数式表示); 乙从B到A所用的时间是: 小时(用含a,b的代数式表示). (3)若当甲到达B地后立刻按原路向A返行,当乙到达A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB两地的距离为多少? 24.在平面直角坐标系中,点、在坐标轴上,其中、满足. (1)求、两点的坐标; (2)将线段平移到,点的对应点为,如图1所示,若三角形的面积为,求点的坐标; (3)平移线段到,若点、也在坐标轴上,如图2所示.为线段上的一动点(不与、重合),连接、平分,.求证:. 25.某治污公司决定购买10台污水处理设备.现有甲、乙两种型号的设备可供选择,其中每台的价格与月处理污水量如下表: 甲型 乙型 价格(万元/台) x y 处理污水量(吨/月) 300 260 经调查:购买一台甲型设备比购买一台乙型设备多2万元,购买3台甲型设备比购买4台乙型设备少2万元. (1)求x,y的值; (2)如果治污公司购买污水处理设备的资金不超过91万元,求该治污公司有哪几种购买方案; (3)在(2)的条件下,如果月处理污水量不低于2750吨,为了节约资金,请为该公司设计一种最省钱的购买方案. 26.某数码专营店销售A,B两种品牌智能手机,这两种手机的进价和售价如表所示: A B 进价(元/部) 3300 3700 售价(元/部) 3800 4300 (1)该店销售记录显示,三月份销售A、B两种手机共34部,且销售A种手机的利润恰好是销售B种手机利润的2倍,求该店三月份售出A种手机和B种手机各多少部? (2)根据市场调研,该店四月份计划购进这两种手机共40部,要求购进B种手机数不低于A种手机数的,用于购买这两种手机的资金低于140000元,请通过计算设计所有可能的进货方案. 27.定义一种新运算“a※b”:当a≥b时,a※b=2a+b;当a<b时,a※b=2a﹣b. 例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24. (1)填空:(﹣2)※3= ; (2)若(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),则x的取值范围为 ; (3)已知(2x﹣6)※(9﹣3x)<7,求x的取值范围; (4)小明在计算(2x2﹣2x+4)※(x2+4x﹣6)时随意取了一个x的值进行计算,得出结果是0,小丽判断小明计算错了,小丽是如何判断的?请说明理由. 28.某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子. (1)若现有A型板材150张,B型板材300张,可制作竖式和横式两种无盖箱子各多少个? (2)若该工厂准备用不超过24000元资金去购买A、B两种型号板材,制作竖式、横式箱子共100个,已知A型板材每张20元,B型板材每张60元,问最多可以制作竖式箱子多少个? (3)若该工厂新购得65张规格为的C型正方形板材,将其全部切割成A型或B型板材(不计损耗),用切割的板材制作两种类型的箱子,要求竖式箱子不少于10个,且材料恰好用完,则最多可以制作竖式箱子多少个? 29.某市出租车的起步价是7元(起步价是指不超过行程的出租车价格),超过3km行程后,其中除的行程按起步价计费外,超过部分按每千米1.6元计费(不足按计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过,那么顾客还需付回程的空驶费,超过部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费).如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费.现设小文等4人从市中心A处到相距()的B处办事,在B处停留的时间在3分钟以内,然后返回A处.现在有两种往返方案: 方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元); 方案二:4人乘同一辆出租车往返. 问选择哪种计费方式更省钱?(写出过程) 30.如图,平面直角坐标系中,点的坐标是,点在轴的正半轴上,的面积等于18. (1)求点的坐标; (2)如图,点从点出发,沿轴正方向运动,点运动至点停止,同时点从点出发,沿轴正方向运动,点运动至点停止,点、点的速度都为每秒1个单位,设运动时间为秒,的面积为,求用含的式子表示,并直接写出的取值范围; (3)在(2)的条件下,过点作,连接并延长交于,连接交于点,若,求值及点的坐标. 【参考答案】***试卷处理标记,请不要删除 一、解答题 1.(1)C(-2,0);(2)点P坐标为(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,证明见解析. 【分析】 (1)由点A坐标可得OA=4,再根据C点x轴负半轴上,AC=6即可求得答案; (2)先求出S△ABC=9,S△BOP=OP,再根据S△POB=S△ABC,可得OP=6,即可写出点P的坐标; (3)先得到点H的坐标,再结合点B的坐标可得到BH//AC,然后根据点M在射线CH上,分点M在线段CH上与不在线段CH上两种情况分别进行讨论即可得. 【详解】 (1)∵A(4,0), ∴OA=4, ∵C点x轴负半轴上,AC=6, ∴OC=AC-OA=2, ∴C(-2,0); (2)∵B(2,3), ∴S△ABC=×6×3=9,S△BOP=OP×2=OP, 又∵S△POB=S△ABC, ∴OP=×9=6, ∴点P坐标为(0,6)或(0,-6); (3)∠BMA=∠MAC±∠HBM,证明如下: ∵把点C往上平移3个单位得到点H,C(-2,0), ∴H(-2,3), 又∵B(2,3), ∴BH//AC; 如图1,当点M在线段HC上时,过点M作MN//AC, ∴∠MAC=∠AMN,MN//HB, ∴∠HBM=∠BMN, ∵∠BMA=∠BMN+∠AMN, ∴∠BMA=∠HBM+∠MAC; 如图2,当点M在射线CH上但不在线段HC上时,过点M作MN//AC, ∴∠MAC=∠AMN,MN//HB, ∴∠HBM=∠BMN, ∵∠BMA=∠AMN-∠BMN, ∴∠BMA=∠MAC-∠HBM; 综上,∠BMA=∠MAC±∠HBM. 【点睛】 本题考查了点的坐标,三角形的面积,点的平移,平行线的判定与性质等知识,综合性较强,正确进行分类并准确画出图形是解题的关键. 2.(1)40°;(2)65°;(3)存在,56°或20° 【分析】 (1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可. 【详解】 解:(1)∵∠CEB=100°,AB∥CD, ∴∠ECQ=80°, ∵∠PCF=∠PCQ,CG平分∠ECF, ∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°; (2)∵AB∥CD ∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°, ∴∠EGC+∠ECG=80°, 又∵∠EGC-∠ECG=30°, ∴∠EGC=55°,∠ECG=25°, ∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°, ∵PQ∥CE, ∴∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x, ①当点G、F在点E的右侧时, 则∠ECG=x,∠PCF=∠PCD=x, ∵∠ECD=80°, ∴x+x+x+x=80°, 解得x=16°, ∴∠CPQ=∠ECP=x+x+x=56°; ②当点G、F在点E的左侧时, 则∠ECG=∠GCF=x, ∵∠CGF=180°-4x,∠GCQ=80°+x, ∴180°-4x=80°+x, 解得x=20°, ∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°, ∴∠PCQ=∠FCQ=60°, ∴∠CPQ=∠ECP=80°-60°=20°. 【点睛】 本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等. 3.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30° 【分析】 (1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解; (2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解; (3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解. 【详解】 解:(1)过E作EH∥AB,如图1, ∴∠BME=∠MEH, ∵AB∥CD, ∴HE∥CD, ∴∠END=∠HEN, ∴∠MEN=∠MEH+∠HEN=∠BME+∠END, 即∠BME=∠MEN﹣∠END. 如图2,过F作FH∥AB, ∴∠BMF=∠MFK, ∵AB∥CD, ∴FH∥CD, ∴∠FND=∠KFN, ∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND, 即:∠BMF=∠MFN+∠FND. 故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND. (2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND. ∵NE平分∠FND,MB平分∠FME, ∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END, ∵2∠MEN+∠MFN=180°, ∴2(∠BME+∠END)+∠BMF﹣∠FND=180°, ∴2∠BME+2∠END+∠BMF﹣∠FND=180°, 即2∠BMF+∠FND+∠BMF﹣∠FND=180°, 解得∠BMF=60°, ∴∠FME=2∠BMF=120°; (3)∠FEQ的大小没发生变化,∠FEQ=30°. 由(1)知:∠MEN=∠BME+∠END, ∵EF平分∠MEN,NP平分∠END, ∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END, ∵EQ∥NP, ∴∠NEQ=∠ENP, ∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME, ∵∠BME=60°, ∴∠FEQ=×60°=30°. 【点睛】 本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键. 4.(1)见解析;(2)55°;(3) 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数. 【详解】 解:(1)如图1,过点作, 则有, , , , ; (2)①如图2,过点作, 有. , . . . 即, 平分,平分, ,, . 答:的度数为; ②如图3,过点作, 有. , , . . . 即, 平分,平分, ,, . 答:的度数为. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 5.(1)49°,(2)44°,(3)∠OPQ=∠ORQ 【分析】 (1)根据∠OPA=∠QPB.可求出∠OPA的度数; (2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题; (3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ. 【详解】 解:(1)∵∠OPA=∠QPB,∠OPQ=82°, ∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°, (2)作PC∥m, ∵m∥n, ∴m∥PC∥n, ∴∠AOP=∠OPC=43°, ∠BQP=∠QPC=49°, ∴∠OPQ=∠OPC+∠QPC=43°+49°=92°, ∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°, (3)∠OPQ=∠ORQ. 理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC, ∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角, ∴∠AOP=∠DOR,∠BQP=∠RQC, ∴∠OPQ=∠ORQ. 【点睛】 本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的. 6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析. 【分析】 (1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果; (2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果; (3)过P作PKHDGE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果. 【详解】 解:(1)过点B作BMHD,则HDGEBM,如图1, ∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG, ∵∠DAB=120°,∠BCG=40°, ∴∠ABM=60°,∠CBM=40°, ∴∠ABC=∠ABM+∠CBM=100°; (2)过B作BPHDGE,过F作FQHDGE,如图2, ∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG, ∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG, ∵∠DAB=120°, ∴∠HAB=180°﹣∠DAB=60°, ∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°, ∴∠HAF=30°,∠FCG=40°, ∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°, ∴∠ABC>∠AFC; (3)过P作PKHDGE,如图3, ∴∠APK=∠HAP,∠CPK=∠PCG, ∴∠APC=∠HAP+∠PCG, ∵PN平分∠APC, ∴∠NPC=∠HAP+∠PCG, ∵∠PCE=180°﹣∠PCG,CN平分∠PCE, ∴∠PCN=90°﹣∠PCG, ∵∠N+∠NPC+∠PCN=180°, ∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP, 即:∠N=90°﹣∠HAP. 【点睛】 本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点. 7.(1);;(2)①;②;( 3 ). 【分析】 (1)利用材料中的“拆项法”解答即可; (2)①先变形为,再利用(1)中的规律解题;②先变形为,再逆用分数的加法法则即可分解; (3)按照定义“”法则表示出,再利用(1)中的规律解题即可. 【详解】 解:(1)观察发现:, = = =; 故答案是:;. (2)初步应用: ①=; ②; 故答案是:;. ( 3 )由定义可知: = = = =. 故的值为. 【点睛】 考查了有理数运算中的规律型问题:数字的变化规律,有理数的混合运算.本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题. 8.(I) x=2;(Ⅱ) 3; (Ⅲ) -2017. 【分析】 (I)根据对数的定义,得出x2=4,求解即可; (Ⅱ)根据对数的定义求解即;; (Ⅲ)根据loga(M•N)=logaM+logaN求解即可. 【详解】 (I)解:∵logx4=2, ∴x2=4, ∴x=2或x=-2(舍去) (Ⅱ)解:∵8=23, ∴log28=3, 故答案为3; (Ⅲ)解:(lg2)2+lg2•1g5+1g5﹣2018 = lg2•( lg2+1g5) +1g5﹣2018 = lg2 +1g5﹣2018 =1-2018 =-2017 故答案为-2017. 【点睛】 本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义. 9.(1)不是,是;(2)见解析;(3)432或456或840或864或888 【分析】 (1)根据等差数的定义判定即可; (2)设这个三位数是M,,根据等差数的定义可知,进而得出即可. (3)根据等差数的定义以及24的倍数的数的特征可先求出a的值,再根据是8的倍数可确定c的值,又因为,所以可确定a、c为偶数时b才可取整数有意义,排除不符合条件的a、c值,再将符合条件的a、c代入求出b的值,即可求解. 【详解】 解:(1)∵ , ∴148不是等差数, ∵ , ∴514335是等差数; (2)设这个三位数是M,, ∵ , ∴ , ∵ , ∴这个等差数是3的倍数; (3)由(2)知 , ∵T是24的倍数, ∴ 是8的倍数, ∵2c是偶数, ∴只有当35a也是偶数时才有可能是8的倍数, ∴或4或6或8, 当时, ,此时若,则 ,若 ,则 ,若 ,则,大于70又是8的倍数的最小数是72,之后是80,88当时 不符合题意; 当时,,此时若,则,若,则,(144、152是8的倍数), 当时,,此时若,则,若,则, (216、244是8的倍数), 当时,,此时若,则,若,则, 若,则,(280,288,296是8的倍数), ∵, ∴若a是偶数,则c也是偶数时b才有意义, ∴和是c是奇数均不符合题意, 当时, , 当时,, 当时,, 当时,, 当时,, 综上,T为432或456或840或864或888. 【点睛】 本题考查新定义下的实数运算、有理数混合运算,整式的加减运算,能够结合倍数的特点及熟练掌握整数的奇偶性是解题关键. 10.(1)2;5;(2)1,2,3;(3)3;(4)255 【分析】 (1)先估算和的大小,再由并新定义可得结果; (2)根据定义可知x<4,可得满足题意的x的整数值; (3)根据定义对120进行连续求根整数,可得3次之后结果为1; (4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案. 【详解】 解:(1)∵22=4, 62=36,52=25, ∴5<<6, ∴[]=[2]=2,[]=5, 故答案为2,5; (2)∵12=1,22=4,且[]=1, ∴x=1,2,3, 故答案为1,2,3; (3)第一次:[]=10, 第二次:[]=3, 第三次:[]=1, 故答案为3; (4)最大的正整数是255, 理由是:∵[]=15,[]=3,[]=1, ∴对255只需进行3次操作后变为1, ∵[]=16,[]=4,[]=2,[]=1, ∴对256只需进行4次操作后变为1, ∴只需进行3次操作后变为1的所有正整数中,最大的是255, 故答案为255. 【点睛】 本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力. 11.(1)2;5;(2)1,2,3;(3)3;(4)255 【分析】 (1)先估算和的大小,再由并新定义可得结果; (2)根据定义可知x<4,可得满足题意的x的整数值; (3)根据定义对120进行连续求根整数,可得3次之后结果为1; (4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案. 【详解】 解:(1)∵22=4, 62=36,52=25, ∴5<<6, ∴[]=[2]=2,[]=5, 故答案为2,5; (2)∵12=1,22=4,且[]=1, ∴x=1,2,3, 故答案为1,2,3; (3)第一次:[]=10, 第二次:[]=3, 第三次:[]=1, 故答案为3; (4)最大的正整数是255, 理由是:∵[]=15,[]=3,[]=1, ∴对255只需进行3次操作后变为1, ∵[]=16,[]=4,[]=2,[]=1, ∴对256只需进行4次操作后变为1, ∴只需进行3次操作后变为1的所有正整数中,最大的是255, 故答案为255. 【点睛】 本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力. 12.(1);;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里. 【分析】 (1)根据题意,确定实数左侧第一个整数点所对应的数即得; (2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得; ②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得. 【详解】 (1)∵ ∴ ∵ ∴ 故答案为:;. (2)①∵ ∴3.07公里需要2元 ∵ ∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元 ∴7.93公里所需费用为:(元) ∵ ∴公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元; ∴公里所需费用为:(元) 故答案为:2;3;6. ②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元; ∴乘坐24公里所需费用为:(元) ∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里 ∴7元可以乘坐的地铁最大里程为:(公里) ∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里 答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里. 【点睛】 本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键. 13.(1);(2);(3)不变,值为2. 【分析】 (1)根据,即可得出a,b的值- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初一 数学 下册 期末 几何 压轴 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文