成都西川中学初一数学压轴题专题.doc
《成都西川中学初一数学压轴题专题.doc》由会员分享,可在线阅读,更多相关《成都西川中学初一数学压轴题专题.doc(38页珍藏版)》请在咨信网上搜索。
1、成都西川中学初一数学压轴题专题一、七年级上册数学压轴题1已知:,OB、OM、ON,是 内的射线(1)如图 1,若 OM 平分 , ON平分当射线OB 绕点O 在 内旋转时,= 度(2)OC也是内的射线,如图2,若 ,OM平分,ON平分,当射线OB绕点O在内旋转时,求的大小(3)在(2)的条件下,当射线OB从边OA开始绕O点以每秒的速度逆时针旋转t秒,如图3,若,求t的值答案:(1)80;(2)70;(3)26【分析】(1)根据角平分线的定义进行角的计算即可;(2)依据OM平分AOC,ON平分BOD,即可得到MOC=AOC,BON=BOD,再根据MO解析:(1)80;(2)70;(3)26【分析
2、】(1)根据角平分线的定义进行角的计算即可;(2)依据OM平分AOC,ON平分BOD,即可得到MOC=AOC,BON=BOD,再根据MON=MOC+BON-BOC进行计算即可;(3)依据AOM=(10+2t+20),DON=(160-10-2t),AOM:DON=2:3,即可得到3(30+2t)=2(150-2t),进而得出t的值【详解】解:(1)AOD=160,OM平分AOB,ON平分BOD,MOB=AOB,BON=BOD,MON=MOB+BON=AOB+BOD=(AOB+BOD)=AOD=80,故答案为:80;(2)OM平分AOC,ON平分BOD,MOC=AOC,BON=BOD,MON=M
3、OC+BON-BOC=AOC+BOD-BOC=(AOC+BOD)-BOC=180-20=70;(3)AOM=(2t+20),DON=(160-2t),又AOM:DON=2:3,3(20+2t)=2(160-2t)解得,t=26答:t为26秒【点睛】本题考查的是角平分线的定义和角的计算,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线,解决本题的关键是理解动点运动情况2已知在数轴上,一动点P从原点出发向左移动4个单位长度到达点A,再向右移动7个单位长度到达点B(1)求点A、B表示的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为9,若存在,写出点P 表示的数;若不
4、存在,说明理由;(3)若小虫M从点A出发,以每秒0.5个单位长度沿数轴向右运动,另一只小虫N从点B出发,以每秒0.2个单位长度沿数轴向左运动设两只小虫在数轴上的点C处相遇,点C表示的数是多少?答案:(1) ;(2)或; (3)【分析】(1)由数轴上的点的移动规律,左减右加,从而可得答案;(2)由题意得:再分当时,当时,当时,三种情况讨论,从而可得答案;(3)设两只小虫的相遇时运动时解析:(1) ;(2)或; (3)【分析】(1)由数轴上的点的移动规律,左减右加,从而可得答案;(2)由题意得:再分当时,当时,当时,三种情况讨论,从而可得答案;(3)设两只小虫的相遇时运动时间为,结合题意可得: 解
5、方程求解时间,再求点对应的数即可【详解】解:(1)动点P从原点出发向左移动4个单位长度到达点A,则点对应的数为: 再向右移动7个单位长度到达点B,则点对应的数为: (2)存在,理由如下:设对应的数为: 则由题意得: 当时, 经检验:符合题意,当时,方程左边 此时方程无解,当时, 经检验:符合题意,综上:点P到点A和点B的距离之和为9时,或 (3)设两只小虫的相遇时运动时间为,结合题意可得: 点对应的数为:【点睛】本题考查的是数轴上动点问题,数轴上两点之间的距离,绝对值方程的解法,一元一次方程的应用,掌握数轴上点运动后对应的数的表示规律,两点间的距离,分类讨论是解题的关键3在数轴上,点A向右移动
6、1个单位得到点B,点B向右移动(n为正整数)个单位得到点C,点A,B,C分别表示有理数a,b,c;(1)当时,点A,B,C三点在数轴上的位置如图所示,a,b,c三个数的乘积为正数,数轴上原点的位置可能( )A在点A左侧或在A,B两点之间 B在点C右侧或在A,B两点之间C在点A左侧或在B,C两点之间 D在点C右侧或在B,C两点之间若这三个数的和与其中的一个数相等,求a的值;(2)将点C向右移动个单位得到点D,点D表示有理数d,若a、b、c、d四个数的积为正数,这四个数的和与其中的两个数的和相等,且a为整数,请写出n与a的关系式答案:(1)C;-2或或;(2)当为奇数时,当为偶数时,【分析】(1)
7、把代入即可得出,再根据、三个数的乘积为正数即可选择出答案;(2)分两种情况讨论:当为奇数时;当为偶数时;用含的代数式表解析:(1)C;-2或或;(2)当为奇数时,当为偶数时,【分析】(1)把代入即可得出,再根据、三个数的乘积为正数即可选择出答案;(2)分两种情况讨论:当为奇数时;当为偶数时;用含的代数式表示即可【详解】解:(1)把代入即可得出,、三个数的乘积为正数,从而可得出在点左侧或在、两点之间故选;,当时,当时,当时,;(2)依据题意得,、四个数的积为正数,且这四个数的和与其中的两个数的和相等,或或;为整数,当为奇数时,当为偶数时,【点睛】本题考查了数轴,我们把数和点对应起来,也就是把“数
8、”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想4已知多项式,次数是b,4a与b互为相反数,在数轴上,点A表示a,点B表示数b(1)a= ,b= ;(2)若小蚂蚁甲从点A处以3个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以4个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t(写出解答过程)(3)若小蚂蚁甲和乙约好分别从A,B两点,分别沿数轴甲向左,
9、乙向右以相同的速度爬行,经过一段时间原路返回,刚好在16s时一起重新回到原出发点A和B,设小蚂蚁们出发t(s)时的速度为v(mm/s),v与t之间的关系如下图,(其中s表示时间单位秒,mm表示路程单位毫米)t(s)0t22t55t16v(mm/s)10168当t为1时,小蚂蚁甲与乙之间的距离是 当2t5时,小蚂蚁甲与乙之间的距离是 (用含有t的代数式表示)答案:(1)-2,8;(2)秒或10秒;(3)30mm;32t-14【分析】(1)根据多项式的次数的定义可得b值,再由相反数的定义可得a值;(2)分两种情况讨论:甲乙两小蚂蚁均向左运动,即0解析:(1)-2,8;(2)秒或10秒;(3)30m
10、m;32t-14【分析】(1)根据多项式的次数的定义可得b值,再由相反数的定义可得a值;(2)分两种情况讨论:甲乙两小蚂蚁均向左运动,即0t2时,此时OA=2+3t,OB=8-4t;甲向左运动,乙向右运动,即t2时,此时OA=2+3t,OB=4t-8;(3)令t=1,根据题意列出算式计算即可;先得出小蚂蚁甲和乙爬行的路程及各自爬行的返程的路程,则可求得小蚂蚁甲与乙之间的距离【详解】解:(1)多项式4x6y2-3x2y-x-7,次数是b,b=8;4a与b互为相反数,4a+8=0,a=-2故答案为:-2,8;(2)分两种情况讨论:甲乙两小蚂蚁均向左运动,即0t2时,此时OA=2+3t,OB=8-4
11、t;OA=OB,2+3t=8-4t,解得:t=;甲向左运动,乙向右运动,即t2时,此时OA=2+3t,OB=4t-8;OA=OB,2+3t=4t-8,解得:t=10;甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t为秒或10秒;(3)当t为1时,小蚂蚁甲与乙之间的距离是:8+101-(-2-101)=30mm;小蚂蚁甲和乙同时出发以相同的速度爬行,小蚂蚁甲和乙爬行的路程是相同的,各自爬行的总路程都等于:102+163+811=156(mm),原路返回,刚好在16s时一起重新回到原出发点A和B,小蚂蚁甲和乙返程的路程都等于78mm,甲乙之间的距离为:8-(-2)+1022+16(t-2)2=32
12、t-14故答案为:32t-14【点睛】本题考查了一元一次方程在数轴上两点之间的距离问题中的应用,具有方程思想并会分类讨论是解题的关键5在数轴上,点A代表的数是-12,点B代表的数是2,AB表示点A与点B之间的距离(1)若点P为数轴上点A与点B之间的一个点,且AP=6,则BP=_;若点P为数轴上一点,且BP=2,则AP=_;(2)若C点为数轴上一点,且点C到点A点的距离与点C到点B的距离的和是20,求C点表示的数;(3)若点M从点A出发,点N从点B出发,且M、N同时向数轴负方向运动,M点的运动速度是每秒6个单位长度,N点的运动速度是每秒8个单位长度,当MN=2时求运动时间t的值答案:(1)8;1
13、6;(2)-15或5;(3)6或8【分析】(1)根据题目要求,P在数轴上点A与B之间,所以根据BP=AB-AP进行求解需要考虑两种情况,即P在数轴上点A与B之间时和当P不在解析:(1)8;16;(2)-15或5;(3)6或8【分析】(1)根据题目要求,P在数轴上点A与B之间,所以根据BP=AB-AP进行求解需要考虑两种情况,即P在数轴上点A与B之间时和当P不在数轴上点A与B之间时当P在数轴上点A与B之间时,AP=AB-BP当P不在数轴上点A与B之间时,此时有两种情况,一种是超越A点,在A点左侧,此时BP14,不符合题目要求另一种情况是P在B点右侧,此时根据AP=AB+BP作答(2)根据前面分析
14、,C不可能在AB之间,所以,C要么在A左侧,要么在B右侧根据这两种情况分别进行讨论计算(3)分点M在点N的左侧和点M在点N的右侧,两种情况分别列出方程求解【详解】解:(1)AB总距离是2-(-12)=14,P在数轴上点A与B之间,BP=AB-AP=14-6=8,故答案为:8P在数轴上点A与B之间时,AP=AB-BP=14-2=12;当P不在数轴上点A与B之间时,因为AB=14,所以P只能在B右侧,此时BP=2,AP=AB+BP=14+2=16,故答案为:16(2)假设C为x,当C在A左侧时,AC=-12-x,BC=2-x,AC+BC=20,则-12-x+2-x=20,解得x=-15,当C在B右
15、侧时,AC=x-(-12),BC=x-2,AC+BC=20,则x-(-12)+x-2=20,解得x=5,点C表示的数为-15或5;(3)当M在点N左侧时,2-8t-(-12-6t)=2,解得:t=6;当M在点N右侧时,-12-6t-(2-8t)=2,解得:t=8,MN=2时,t的值为6或8【点睛】本题考查了动点问题,一元一次方程的应用在充分理解题目要求的基础上,可借助数轴用数形结合的方法求解在解答过程中,注意动点问题的多解可能,并针对每一种可能进行讨论分析6如图,数轴上有A、B、C、D四个点,分别对应的数为a、b、c、d,且满足a,b是方程的两根,与互为相反数,(1)求a、b、c、d的值;(2
16、)若A、B两点以6个单位长度秒的速度向右匀速运动,同时C、D两点以2个单位长度/秒向左匀速运动,并设运动时间为t秒,问t为多少时,?(3)在(2)的条件下,A、B、C、D四个点继续运动,当点B运动到点D的右侧时,问是否存在时间t,使B与C的距离是A与D的距离的4倍?若存在,求时间t;若不存在,请说明理由答案:(1)a=-10,b=-8,c=16,d=20;(2)t为或4时,;(3)存在,时间t=或4时,B与C的距离是A与D的距离的4倍【分析】(1)解含绝对值的方程即可求出a和b,根据平方和绝对值的解析:(1)a=-10,b=-8,c=16,d=20;(2)t为或4时,;(3)存在,时间t=或4
17、时,B与C的距离是A与D的距离的4倍【分析】(1)解含绝对值的方程即可求出a和b,根据平方和绝对值的非负性即可求出c和d;(2)用含t的式子表示出点A、B、C、D表示的数,然后根据点A和点C的位置关系分类讨论,分别列出方程即可求出结论;(3)先根据题意求出t的取值范围,然后根据点A和点D的位置关系分类讨论,分别列出对应的方程即可分别求出结论【详解】解:(1)解得:x=-10或x=-8a,b是方程的两根,a=-10,b=-8与互为相反数解得:c=16,d=20;(2)由运动时间为t秒,则点A表示的数为6t10,点B表示的数为6t8,点C表示的数为162t,点D表示的数为202t若点A在点C左侧时
18、,根据题意可得(162t)(6t10)=6解得:t=;若点A在点C右侧时,根据题意可得(6t10)(162t)=6解得:t=4;答:t为或4时,;(3)存在,当B与D重合时,即6t8=202t解得:t=点B运动到点D的右侧t,点B一定在点C右侧当点A与点D重合时,即6t10=202t解得:t=若点A在点D左侧或与D重合时,即t时,AD=(202t)(6t10)=308t,BC=(6t8)(162t)=8t24根据题意可得8t24=4(308t)解得:t=;若点A在点D右侧时,即t时,AD=(6t10)(202t)=8t30,BC=(6t8)(162t)=8t24根据题意可得8t24=4(8t3
19、0)解得:t=4;综上:存在,时间t=或4时,B与C的距离是A与D的距离的4倍【点睛】此题考查的是一元一次方程的应用、数轴与动点问题,掌握数轴上两点之间的距离公式是解题关键7已知数轴上三点,对应的数分别为,0,3,点为数轴上任意一点,其对应的数为(1)如果点到点、点的距离相等,那么的值是_(2)数轴上是否存在点,使点到点、点的距离之和是8?若存在,求出的值;若不存在,请说明理由(3)如果点以每分钟1个单位长度的速度从点向右运动,同时另一点从点以每分钟2个单位长度的速度向左运动设分钟时点和点到点的距离相等,则的值为_(直接写出答案)答案:(1)1 (2)存在,或 (3)或【分析】(1)根据两点间
20、的距离列方程求解即可;(2)分两种情况求解即可;(3)分点P和点Q相遇时和点Q运动到点M的左侧时两种情况解析:(1)1 (2)存在,或 (3)或【分析】(1)根据两点间的距离列方程求解即可;(2)分两种情况求解即可;(3)分点P和点Q相遇时和点Q运动到点M的左侧时两种情况求解【详解】解:(1)由题意得3-x=x-(-1),解得x=1;(2)存在,MN=3-(-1)=4,点P不可能在M、N之间当点P在点M的左侧时,(-1-x)+(3-x)=8,解得x=-3;当点P在点N的右侧时,x-(-1)+(x-3)=8,解得x=5;或;(3)当点P和点Q相遇时,t+2t=3,解得t=1;当点Q运动到点M的左
21、侧时,t+1=2t-4,解得t=5;或【点睛】此题主要考查了数轴的应用以及一元一次方程的应用,分类讨论得出是解题关键8阅读绝对值拓展材料:表示数a在数轴上的对应点与原点的距离如:表示5在数轴上的对应点到原点的距离而,即表示5、0在数轴上对应的两点之间的距离,类似的,有:表示5、在数轴上对应的两点之间的距离一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ,数轴上表示1和的两点之间的距离是 ;(2)数轴上表示x和的两点A和B之间的距离是 ,如果A、B两点之间的距离为2,那么 (3)可以理解为数轴上表示x和 的两点之间
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 成都 中学 初一 数学 压轴 专题
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。