上海民办华二初级中学数学八年级上册期末试卷含答案.doc
《上海民办华二初级中学数学八年级上册期末试卷含答案.doc》由会员分享,可在线阅读,更多相关《上海民办华二初级中学数学八年级上册期末试卷含答案.doc(20页珍藏版)》请在咨信网上搜索。
上海民办华二初级中学数学八年级上册期末试卷含答案 一、选择题 1、“垃圾分类,利国利民”,以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( ) A.可回收物 B.有害垃圾 C.厨余垃圾 D.其他垃圾 2、世界最大的单口球面射望远镜被誉为“中国天眼”,在其新发现的脉冲星中有一颗毫秒脉冲星的自转周期为0.00519秒数据0.00519用科学记数法表示为( ) A. B. C. D. 3、下列计算正确的是( ) A. B. C. D. 4、若分式的值为0,则x的值是( ) A.1 B.0 C. D.±1 5、下列等式从左到右的变形,是因式分解的是( ) A.a(x+y)=ax+ay B.2a(b+c)﹣3(b+c)=(2a﹣3)(b+c) C.15x5=3x2•x5 D.a2+2a+1=a(a+2)+1 6、下列分式的变形正确的是( ) A. B. C. D. 7、如图,AB=AD,∠B=∠DAE,下列选项( )不可判定△ABC≌△ADE A.AC=DE B.BC=AE C.∠C=∠E D.∠BAC=∠ADE 8、若关于的方程有增根,则的值为( ) A.-5 B.0 C.1 D.2 9、如图,是的外角,平分,若,,则等于( ) A.40° B.50° C.45° D.55° 二、填空题 10、如图,在△ABD中,AD=AB,∠DAB=90⁰,在△ACE中,AC=AE,∠EAC=90⁰,CD,BE相交于点F,有下列四个结论:①DC=BE;②∠BDC=∠BEC;③DC⊥BE;④FA平分∠DFE.其中,正确的结论有( ) A.4个 B.3个 C.2个 D.1个 11、如果分式的值为零,那么x=________. 12、已知,点、两点关于轴对称,则的值是_____. 13、已知,则实数A+B=_____. 14、已知,,则______. 15、如图,在中,,,,垂直平分,点为直线上的任意一点,则周长的最小值是__________. 16、如图的平面图形由多条线段首尾相连构成,已知∠A=90°,则∠D+∠E+∠F+∠G=_____. 17、中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.下图是3世纪我国汉代的数学家赵爽在注解《周髀算经》时给出的图案,人们称它为“赵爽弦图”.此图中四个全等的直角三角形可以围成一个大正方形,中空的部分是一个小正方形.如果大正方形的面积是25,小正方形的面积是1,则的值是____________. 18、如图,,,点和点分别为线段和射线上的一点,若点从点出发向点运动,同时点从点出发向点运动,点和点运动速度之比为,运动到某时刻点和点同时停止运动,在射线上取一点,使与全等,则的长为___________. 三、解答题 19、因式分解: (1) (2) 20、解方程:. 21、如图,△ABE≌△DCE,点A,C,B在一条直线上,∠AED和∠BEC相等吗?为什么? 22、在图a中,应用三角形外角的性质不难得到下列结论:∠BDC=∠A+∠ABD+∠ACD.我们可以应用这个结论解决同类图形的角度问题. (1)在图a中,若∠1=20°,∠2=30°,∠BEC=100°,则∠BDC= ; (2)在图a中,若BE平分∠ABD,CE平分∠ACD,BE与CE交于E点,请写出∠BDC,∠BEC和∠BAC之间的关系;并说明理由. (3)如图b,若,试探索∠BDC,∠BEC和∠BAC之间的关系.(直接写出) 23、刘峰和李明相约周末去科技馆看展览,根据他们的谈话内容,试求李明乘公交车、刘峰骑自行车每小时各行多少千米? 刘峰:我查好地图了,你看看 李明:好的,我家门口的公交车站,正好有一趟到科技馆那站停的车,我坐明天的车. 刘峰:从地图上看,我家到科技馆的距离比你家近10千米,我就骑自行车去了. 李明:行,根据我的经验,公交车的速度一般是你骑自行车速度的3倍,那你明天早上点从家出发,如顺利,咱俩同时到达. 24、我们知道整数除以整数(其中),可以用竖式计算,例如计算可以用整式除法如图:,所以. 类比此方法,多项式除以多项式一般也可以用竖式计算,步骤如下: ①把被除式,除式按某个字母作降幂排列,并把所缺的项用零补齐; ②用被除式的第一项除以除式第一项,得到商式的第一项; ③用商式的第一项去乘除式,把积写在被除式下面(同类对齐),消去相等项; ④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除. 例如:计算. 可用整式除法如图: 所以除以 商式为,余式为0 根据阅读材料,请回答下列问题: (1) . (2),商式为 ,余式为 . (3)若关于的多项式能被三项式整除,且均为整数,求满足以上条件的的值及商式. 25、[背景]角的平分线是常见的几何模型,利用轴对称构造三角形全等可解决有关问题. [问题]在四边形ABDE中,C是BD边的中点. (1)如图1,若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为______;(直接写出答案) (2)如图2,AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明; (3)如图3,若∠ACE=120°,AB=4,DE=9,BD=12,则AE的最大值是______.(直接写出答案) 一、选择题 1、B 【解析】B 【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解. 【详解】解:A.不是轴对称图形,也不是中心对称图形,故本选项不合题意; B.既是中心对称图形,又是轴对称图形,故本选项符合题意; C.是轴对称图形,不是中心对称图形,故本选项不合题意; D.不是轴对称图形,也不是中心对称图形,故本选项不符合题意. 故选:B. 【点睛】本题考查了中心对称图形和轴对称图形,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.正确掌握相关定义是解题关键. 2、B 【解析】B 【分析】用科学记数法表示绝对值小于1的数形如为负整数,据此解答. 【详解】解:数据0.00519用科学记数法表示为, 故选:B. 【点睛】本题考查科学记数法表示绝对值小于1的数,是基础考点,掌握相关知识是解题关键. 3、C 【解析】C 【分析】根据积的乘方,幂的乘方,同底数幂的乘除法, 逐项分析判断即可求解. 【详解】解:A. ,故该选项不正确,不符合题意; B. ,故该选项不正确,不符合题意; C. 故该选项正确,符合题意; D. ,故该选项不正确,不符合题意; 故选C 【点睛】本题考查了积的乘方,幂的乘方,同底数幂的乘除法,掌握积的乘方,幂的乘方,同底数幂的乘除法运算法则是解题的关键. 4、C 【解析】C 【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案. 【详解】解:∵分式的值为0, ∴ , 解得:, 故选择:C 【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零分母不为零是解题关键. 5、B 【解析】B 【分析】根据因式分解定义逐项判定即可. 【详解】解:A、a(x+y)=ax+ay是整式乘法运算,不是因式分解,此选项不符合题意; B、2a(b+c)﹣3(b+c)=(2a﹣3)(b+c)是因式分解,此选项符合题意; C、15x5=3x2•x5不是把多项式化成乘积式,不是因式分解,此选项不符合题意; D、a2+2a+1=a(a+2)+1等式右边不是积的形式,不是因式分解,此选项不符合题意; 故选:B. 【点睛】本题考查因式分解,熟练掌握因式分解的定义是解题的关键. 6、C 【解析】C 【分析】根据分式的基本性质即可求出答案. 【详解】解:A. 为最简分式,选项错误,不符合题意; B. ,选项错误,不符合题意; C. ,选项正确,符合条件; D. 为最简分式,选项错误,不符合题意. 故选:C. 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质. 7、A 【解析】A 【分析】结合题意,根据全等三角形的判定性质,对各个选项逐一分析,即可得到答案. 【详解】∵AC=DE,不构成△ABC≌△ADE的条件 ∴A符合题意; ∵BC=AE, ∴△ABC和△ADE中 ∴ ∴B不符合题意; ∵∠C=∠E △ABC和△ADE中 ∴ ∴C不符合题意; ∠BAC=∠ADE, △ABC和△ADE中 ∴ ∴D不符合题意. 故选:A. 【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握三角形全等的判定性质,从而完成求解. 8、A 【解析】A 【分析】根据题意可得x=2,然后把x的值代入整式方程中进行计算即可解答. 【详解】解:, 去分母得,m+1+2x=0, 解得:, ∵方程有增根, ∴x=2, 把x=2代入,得, , 解得. 故选A. 【点睛】本题考查了分式方程的增根,根据题意求出x的值后代入整式方程中进行计算是解题的关键. 9、D 【解析】D 【分析】根据三角形外角性质求出∠ACD,根据角平分线定义求出即可. 【详解】解:∵∠A=70°,∠B=40°, ∴∠ACD=∠A+∠B=110°, ∵CE平分∠ACD, ∴∠ECD=∠ACD=55°, 故选:D. 【点睛】本题考查了角平分线定义和三角形外角性质,能熟记三角形外角性质的内容是解此题的关键. 二、填空题 10、B 【解析】B 【分析】根据∠BAD=∠CAE=90°,结合图形可得∠CAD=∠BAE,再结合AD=AB,AC=AE,利用全等三角形的判定定理可得△CAD≌△EAB,再根据全等三角形的性质即可判断①;根据已知条件,结合图形分析,对②进行分析判断,设AB与CD的交点为O,由(1)中△CAD≌△BAE可得∠ADC=∠ABE,再结合∠AOD=∠BOF,即可得到∠BFO=∠BAD=90°,进而判断③;对④,可通过作△CAD和△BAE的高,结合全等三角形的性质得到两个高之间的关系,再根据角平分线的判定定理即可判断. 【详解】∵∠BAD=∠CAE=90°, ∴∠BAD+∠BAC=∠CAE+∠BAC, ∴∠CAD=∠BAE, 又∵AD=AB,AC=AE, ∴△CAD≌△EAB(SAS), ∴DC=BE. 故①正确. ∵△CAD≌△EAB, ∴∠ADC=∠ABE. 设AB与CD的交点为O. ∵∠AOD=∠BOF,∠ADC=∠ABE, ∴∠BFO=∠BAD=90°, ∴CD⊥BE. 故③正确. 过点A作AP⊥BE于P,AQ⊥CD于Q. ∵△CAD≌△EAB,AP⊥BE,AQ⊥CD, ∴AP=AQ, ∴AF平分∠DFE. 故④正确. ②无法通过已知条件和图形得到. 故选B. 【点睛】本题考查三角形全等的判定和性质,掌握三角形全等的判定方法和性质应用为解题关键. 11、 【分析】根据分式有意义的条件,分式值为0的条件即可求得的值 【详解】解:∵分式的值为零, ∴ 解得 故答案为: 【点睛】本题考查了分式值为0,分式有意义的添加,理解分式值为0的前提是分式必须有意义是解题的关键. 12、0 【分析】根据“关于轴对称的点,横坐标相同,纵坐标互为相反数”求出、的值,然后代入代数式进行计算即可得解. 【详解】解:、关于轴对称, ,, ,, 所以. 故答案为:0. 【点睛】本题考查了关于轴、轴对称的点的坐标,解题的关键是掌握好对称点的坐标规律:(1)关于轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于轴对称的点,纵坐标相同,横坐标互为相反数. 13、A 【解析】5 【分析】已知等式右边通分并利用同分母分式的加法法则计算,再根据分式相等的条件即可求出所求. 【详解】解:等式整理得:, ∴5x+1=A(x+2)+B(x-1) ∴5x+1=(A+B)x+2A-B, 即A+B=4、 故答案为:4、 【点睛】本题考查了分式的加减.解题的关键是通分. 14、2 【分析】根据同底数幂除法的逆运算求解即可. 【详解】解:∵,, ∴, 故答案为:1、 【点睛】本题主要考查了同底数幂除法的逆运算,熟知相关计算法则是解题的关键. 15、10 【分析】如图,根据题意知点关于直线的对称点为点,故当点与点重合时,的最小值等于的长,根据,的长度即可得到周长的最小值. 【详解】∵垂直平分, ∴点与点关于对称, 如图,设与相交于点, ∴当和重 【解析】10 【分析】如图,根据题意知点关于直线的对称点为点,故当点与点重合时,的最小值等于的长,根据,的长度即可得到周长的最小值. 【详解】∵垂直平分, ∴点与点关于对称, 如图,设与相交于点, ∴当和重合时,的值最小,最小值等于的长, ∵,, ∴的周长的最小值是, 故答案为:9、 【点睛】本题考查了轴对称-最短路线问题的应用、垂直平分线的性质,解答此题的关键是准确找出点的位置. 16、270°##270度 【分析】连接EF,在△AEF中,根据三角形内角和是180°得到∠AFE+∠AEF=180°-∠A=180°-90°=90°,在四边形DEFG中,根据四边形内角和是360°得到∠ 【解析】270°##270度 【分析】连接EF,在△AEF中,根据三角形内角和是180°得到∠AFE+∠AEF=180°-∠A=180°-90°=90°,在四边形DEFG中,根据四边形内角和是360°得到∠D+∠DEF+∠EFG+∠G=360°即可得出答案. 【详解】解:如图,连接EF, 在△AEF中,∠AFE+∠AEF=180°-∠A=180°-90°=90°, 在四边形DEFG中,∠D+∠DEF+∠EFG+∠G=360°, ∴∠D+∠DEB+∠AFG+∠G=360°-(∠AFE+∠AEF)=360°-90°=270°, 故答案为:270°. 【点睛】本题考查了多边形的内角和问题,三角形内角和定理,连接EF,构造三角形和四边形是解题的关键. 17、49 【分析】根据题意和图形,可以得到,,然后变形即可得到ab的值,再将展开,将a2 + b2和ab的值代入计算即可. 【详解】解:由图可得, ,, ∴, ∵小正方形的面积是1, ∴, ∴, ∴, 【解析】49 【分析】根据题意和图形,可以得到,,然后变形即可得到ab的值,再将展开,将a2 + b2和ab的值代入计算即可. 【详解】解:由图可得, ,, ∴, ∵小正方形的面积是1, ∴, ∴, ∴, ∴ = = = 25+ 24 =49; 故答案为:48、 【点睛】本题考查勾股定理、完全平方公式,解答本题的关键是求出ab的值,利用数形结合的思想解答. 18、60或32##32或60 【分析】根据题意,可以分两种情况进行讨论,第一种是△AEG≌△BEF,第二种是△AEG≌△BFE,然后根据全等三角形的性质和题目中的数据,即可计算出AG的长. 【详解】解: 【解析】60或32##32或60 【分析】根据题意,可以分两种情况进行讨论,第一种是△AEG≌△BEF,第二种是△AEG≌△BFE,然后根据全等三角形的性质和题目中的数据,即可计算出AG的长. 【详解】解:当△AEG≌△BEF时,AE=BE,AG=BF, ∵AB=80, ∴AE=BE=40, ∵点E和点F运动速度之比为2:3, ∴, 解得BF=60; 当△AEG≌△BFE时,AE=BF,AG=BE, 设BE=2x,则BF=3x, ∴AE=3x, ∵AB=80,AB=AE+BE, ∴80=3x+2x, 解得x=16, ∴AG=BE=2x=32; 由上可得,AG的长为60或32, 故答案为:60或31、 【点睛】本题考查全等三角形的性质,解答本题的关键是明确题意,利用分类讨论和数形结合的思想解答. 三、解答题 19、(1) (2) 【分析】(1)先用提公因式法,再根据平方差公式进行因式分解即可; (2)将看成一个整体,利用提公因式法因式分解即可得出答案. (1) 解: ; (2) 解: . 【点睛】本题考查 【解析】(1) (2) 【分析】(1)先用提公因式法,再根据平方差公式进行因式分解即可; (2)将看成一个整体,利用提公因式法因式分解即可得出答案. (1) 解: ; (2) 解: . 【点睛】本题考查因式分解,涉及到提公因式法因式分解和公式法因式分解,熟练掌握因式分解的方法步骤是解决问题的关键. 20、分式方程无解 【分析】先去分母化为整式方程,解整式方程并检验即可. 【详解】解:去分母得:, 解得:, 经检验是增根, ∴分式方程无解. 【点睛】此题考查了解分式方程,正确掌握解分式方程的步骤及法则 【解析】分式方程无解 【分析】先去分母化为整式方程,解整式方程并检验即可. 【详解】解:去分母得:, 解得:, 经检验是增根, ∴分式方程无解. 【点睛】此题考查了解分式方程,正确掌握解分式方程的步骤及法则是解题的关键. 21、相等.见解析 【分析】根据全等三角形的对应角相等进一步减去同一个角后即可证得结论. 【详解】解:相等; 理由: ∵△ABE≌△DCE, ∴∠AEB=∠DEC, ∴∠DEC-∠AEC=∠AEB-∠AE 【解析】相等.见解析 【分析】根据全等三角形的对应角相等进一步减去同一个角后即可证得结论. 【详解】解:相等; 理由: ∵△ABE≌△DCE, ∴∠AEB=∠DEC, ∴∠DEC-∠AEC=∠AEB-∠AEC, 即:∠AED=∠BEC. 【点睛】本题考查了全等三角形的性质,解题的关键是了解全等三角形的对应角相等,难度不大. 22、(1)150° (2)∠BDC+∠BAC=2∠BEC (3)2∠BDC+∠BAC=3∠BEC 【分析】(1)根据题目给出的条件可得:; (2)根据题意得出∠BDC=∠BEC+∠1+∠2,∠BEC=∠ 【解析】(1)150° (2)∠BDC+∠BAC=2∠BEC (3)2∠BDC+∠BAC=3∠BEC 【分析】(1)根据题目给出的条件可得:; (2)根据题意得出∠BDC=∠BEC+∠1+∠2,∠BEC=∠BAC+∠ABE+∠ACE,再根据BE平分∠ABD,CE平分∠ACD,得出∠ABE=∠1,∠ACE=∠2,然后进行化简即可得出结论; (3)先根据题意得出∠BDC=∠BEC+∠1+∠2,∠BEC=∠BAC+∠ABE+∠ACE,再根据,,得出∠BEC=∠BAC+2∠1+2∠2,整理化简即可得出结论. (1) 解:∵∠1=20°,∠2=30°,∠BEC=100°, ∴. 故答案为:150°. (2) 由题意可知,∠BDC=∠BEC+∠1+∠2,① ∠BEC=∠BAC+∠ABE+∠ACE,② ∵BE平分∠ABD,CE平分∠ACD, ∴∠ABE=∠1,∠ACE=∠2, ①-②得∠BDC-∠BEC=∠BEC-∠BAC, 即∠BDC+∠BAC=2∠BEC. (3) 由题意可知,∠BDC=∠BEC+∠1+∠2,③ ∠BEC=∠BAC+∠ABE+∠ACE,④ ∵∠1=∠ABD,∠2=∠ACD, ∴∠ABE=2∠1,∠ACE=2∠1、 由④得∠BEC=∠BAC+2∠1+2∠2,⑤ ③×2-⑤得2∠BDC-∠BEC=2∠BEC-∠BAC, 即2∠BDC+∠BAC=3∠BEC. 【点睛】本题主要考查了角平分线的定义,三角形外角的性质,理解题意,充分利用数形结合的思想,是解题的关键. 23、刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米 【分析】设刘峰骑自行车的速度为每小时x千米,则李明乘车的速度为每小时3x千米,根据他们的行驶时间相差0.5小时列出方程并解答即可. 【详解 【解析】刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米 【分析】设刘峰骑自行车的速度为每小时x千米,则李明乘车的速度为每小时3x千米,根据他们的行驶时间相差0.5小时列出方程并解答即可. 【详解】解:设刘峰骑自行车每小时行x千米,则李明乘公交车每小时行千米, 根据题意,得, 解得, 经检验,是所列分式方程的解,且符合题意, ∴(千米/时), 答:刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米. 【点睛】本题考查了分式方程的应用,根据题意列出分式方程是解题的关键. 24、(1);(2),;(3)a= -3,b=7,商式为(2x-1). 【分析】(1)模仿例题,可用竖式计算; (2)模仿例题,可用竖式计算; (3)设商式为(x+m),则有=(2x+m)()=2x3+( 【解析】(1);(2),;(3)a= -3,b=7,商式为(2x-1). 【分析】(1)模仿例题,可用竖式计算; (2)模仿例题,可用竖式计算; (3)设商式为(x+m),则有=(2x+m)()=2x3+(m-2)x2+(6-m)x+3m,根据对应项系数相等即可解决问题. 【详解】(1) . ∴. (2), ∴,商式为,余式为. (3)设商式为(2x+m), 则有=(2x+m)()=2x3+(m-2)x2+(6-m)x+3m, ∴-3=3m, ∴m=-1, ∴a=m-2=-1-2=-3,b=6-m=6-(-1)=7,商式为(2x-1), 【点睛】本题考查整式的除法,解题的关键是理解被除式=除式×商式+余式,学会模仿解题. 25、(1)AE=AB+DE (2)AE=AB+DE+BD (3) 【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△CEF 【解析】(1)AE=AB+DE (2)AE=AB+DE+BD (3) 【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论; (3)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.可以求得CF=CG,△CFG是等边三角形,就有FG=CG=BD,进而得出结论; (3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG.根据两点之间线段最短解决问题即可. (1) AE=AB+DE; 理由:在AE上取一点F,使AF=AB, ∵AC平分∠BAE, ∴∠BAC=∠FAC. 在△ACB和△ACF中, , ∴△ACB≌△ACF(SAS), ∴BC=FC,∠ACB=∠ACF. ∵C是BD边的中点. ∴BC=CD, ∴CF=CD. ∵∠ACE=90°, ∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90° ∴∠ECF=∠ECD. 在△CEF和△CED中, , ∴△CEF≌△CED(SAS), ∴EF=ED. ∵AE=AF+EF, ∴AE=AB+DE, 故答案为:AE=AB+DE; (2) 猜想:AE=AB+DE+BD. 证明:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG. ∵C是BD边的中点, ∴CB=CD=BD. ∵AC平分∠BAE, ∴∠BAC=∠FAC. 在△ACB和△ACF中, ∴△ACB≌△ACF(SAS), ∴CF=CB, ∴∠BCA=∠FCA. 同理可证:CD=CG, ∴∠DCE=∠GCE. ∵CB=CD, ∴CG=CF ∵∠ACE=120°, ∴∠BCA+∠DCE=180°-120°=60°. ∴∠FCA+∠GCE=60°. ∴∠FCG=60°. ∴△FGC是等边三角形. ∴FG=FC=BD. ∵AE=AF+EG+FG. ∴AE=AB+DE+BD. (3) 作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG,如图所示: ∵C是BD边的中点, ∴CB=CD=BD=, ∵△ACB≌△ACF(SAS), ∴CF=CB=, ∴∠BCA=∠FCA, 同理可证:CD=CG=, ∴∠DCE=∠GCE, ∵CB=CD, ∴CG=CF, ∵∠ACE=120°, ∴∠BCA+∠DCE=180°-120°=60°, ∴∠FCA+∠GCE=60°, ∴∠FCG=60°, ∴△FGC是等边三角形, ∴FC=CG=FG=, ∵AE≤AF+FG+EG, ∴当A、F、G、E共线时AE的值最大,最大值为. 故答案为:. 【点睛】本题考查了四边形的综合题,角平分线的性质的运用,全等三角形的判定及性质的运用,等边三角形的性质的运用,勾股定理的运用,解答时证明三角形全等是关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海 民办 初级中学 数学 年级 上册 期末试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文