人教版七年级数学下册相交线与平行线测试题和答案.doc
《人教版七年级数学下册相交线与平行线测试题和答案.doc》由会员分享,可在线阅读,更多相关《人教版七年级数学下册相交线与平行线测试题和答案.doc(27页珍藏版)》请在咨信网上搜索。
一、选择题 1.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB,CD,若,若,则的度数是( ) A. B. C. D. 2.如图,则与的数量关系是( ) A. B. C. D. 3.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是( ) A.102° B.108° C.124° D.128° 4.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于( ) A.70° B.80° C.90° D.100° 5.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3( ) A.70° B.180° C.110° D.80° 6.如图,已知AB∥CD, EF∥CD,则下列结论中一定正确的是( ) A.∠BCD= ∠DCE; B.∠ABC+∠BCE+∠CEF=360; C.∠BCE+∠DCE=∠ABC+∠BCD; D.∠ABC+∠BCE -∠CEF=180. 7.给出下列说法: (1)两条直线被第三条直线所截,同位角相等; (2)不相等的两个角不是同位角; (3)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交; (4)从直线外一点到这条直线的垂线段,叫做该点到直线的距离; (5)过一点作已知直线的平行线,有且只有一条. 其中真命题的有( ) A.0个 B.1个 C.2个 D.3个 8.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为( ). A.20° B.80° C.160° D.20°或160° 9.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,,则∠E的度数是( ) A.30° B.40° C.60° D.70° 10.如图,AB∥CD,∠EBF=∠FBA,∠EDG=∠GDC,∠E=45°,则∠H为( ) A.22° B.22.5° C.30° D.45° 二、填空题 11.一副三角尺按如图所示叠放在一起,其中点重合,若固定三角形,将三角形绕点顺时针旋转一周,共有 _________次 出现三角形的一边与三角形AOB的某一边平行. 12.如图,已知,、的交点为,现作如下操作: 第一次操作,分别作和的平分线,交点为, 第二次操作,分别作和的平分线,交点为, 第三次操作,分别作和的平分线,交点为, … 第次操作,分别作和的平分线,交点为. 若度,那等于__________度. 13.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是_____. 14.如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______. 15.如图,△ABC沿AB方向平移3个单位长度后到达△DEF的位置,BC与DF相交于点O,连接CF,已知△ABC的面积为14,AB=7,S△BDO﹣S△COF=___. 16.如图,将长方形沿折叠,点落在边上的点处,点落在点处,若,则等于______. 17.如图,,,平分交于点.如果,则__. 18.如图,直线,与直线,分别交于,,与直线,分别交于,,若,,则_________度. 19.把一张对边互相平行的纸条,折成如图所示,是折痕,若,则下列结论:(1);(2);(3);(4).正确的有________个. 20.如图,,平分,平分,若设,则______度(用x,y的代数式表示),若平分,平分,可得,平分,平分,可得…,依次平分下去,则_____度. 三、解答题 21.已知,AB∥DE,点C在AB上方,连接BC、CD. (1)如图1,求证:∠BCD+∠CDE=∠ABC; (2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系; (3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值. 22.(1)(问题)如图1,若,,.求的度数; (2)(问题迁移)如图2,,点在的上方,问,,之间有何数量关系?请说明理由; (3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数. 23.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC. (1)在动点A运动的过程中, (填“是”或“否”)存在某一时刻,使得AD平分∠EAC? (2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由; (3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系. 24.综合与探究 (问题情境) 王老师组织同学们开展了探究三角之间数量关系的数学活动 (1)如图1,,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系; (问题迁移) (2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动, ①当点在、(不与、重合)两点之间运动时,设,.则,,之间有何数量关系?请说明理由. ②若点不在线段上运动时(点与点、、三点都不重合),请你画出满足条件的所有图形并直接写出,,之间的数量关系. 25.如图,已知,是的平分线. (1)若平分,求的度数; (2)若在的内部,且于,求证:平分; (3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围. 【参考答案】***试卷处理标记,请不要删除 一、选择题 1.D 解析:D 【分析】 由折叠的性质可知∠1=∠BAG,2∠BDC+∠2=180°,根据BE∥AG,得到∠CFB=∠CAG=2∠1,从而根据平行线的性质得到∠CDB=2∠1,则∠2=180°-4∠1. 【详解】 解:由题意得:AG∥BE∥CD,CF∥BD, ∴∠CFB=∠CAG,∠CFB+∠DBF=180°,∠DBF+∠CDB=180° ∴∠CFB=∠CDB ∴∠CAG=∠CDB 由折叠的性质得∠1=∠BAG,2∠BDC+∠2=180° ∴∠CAG=∠CDB=∠1+∠BAG=2α ∴∠2=180°-2∠BDC=180°-4α 故选D. 【点睛】 本题主要考查了平行线的性质与折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解. 2.D 解析:D 【分析】 先设角,利用平行线的性质表示出待求角,再利用整体思想即可求解. 【详解】 设 则 ∵ ∴ ∴ 故选:D. 【点睛】 本题考查了平行线的性质,关键是熟练掌握平行线的性质,注意整体思想的运用. 3.A 解析:A 【分析】 先由矩形的性质得出∠BFE=∠DEF=26°,再根据折叠的性质得出∠CFG=180°-2∠BFE,∠CFE=∠CFG-∠EFG即可. 【详解】 ∵四边形ABCD是矩形, ∴AD∥BC, ∴∠BFE=∠DEF=26°, ∴∠CFE=∠CFG-∠EFG=180°-2∠BFE-∠EFG=180°-3×26°=102°, 故选A. 【点睛】 本题考查了翻折变换(折叠问题)、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键. 4.B 解析:B 【详解】 因为AB∥DF,所以∠D+∠DEB=180°,因为∠DEB与∠AEC是对顶角, 所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B. 5.C 解析:C 【详解】 【分析】作AB∥a,先证AB∥a∥b,由平行线性质得∠2=180°-∠1+∠3,变形可得结果. 【详解】作AB∥a,由直线a平移后得到直线b, 所以,AB∥a∥b 所以,∠2=180°-∠1+∠3, 所以,∠2-∠3=180°-∠1=180°-70°=110°. 故选C 【点睛】本题考核知识点:平行线性质.解题关键点:熟记平行线性质. 6.D 解析:D 【解析】 分析:根据平行线的性质,找出图形中的同旁内角、内错角即可判断. 详解:延长DC到H ∵AB∥CD,EF∥CD ∴∠ABC+∠BCH=180° ∠ABC=∠BCD ∠CE+∠DCE=180° ∠ECH=∠FEC ∴∠ABC+∠BCE+∠CEF=180°+∠FEC ∠ABC+∠BCE -∠CEF=∠ABC+∠BCH+∠ECH-∠CEF=180°. 故选D. 点睛:此题主要考查了平行线的性质,关键是熟记平行线的性质:两直线平行,内错角相等,同旁内角互补,同位角相等. 7.B 解析:B 【详解】 试题分析:根据两平行线被第三条直线所截,同位角相等,故(1)不正确; 同位角不一定相等,只有在两直线平行时,同位角相等,故(2)不正确; 平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交,故(3)正确; 从直线外一点到这条直线的垂线段的长度,叫做该点到直线的距离,故(4)不正确; 过直线外一点作已知直线的平行线,有且只有一条,故(5)不正确. 故选B. 8.D 解析:D 【详解】 试题分析:如图,∵∠A=20°,∠A的两边分别和∠B的两边平行, ∴∠B和∠A可能相等也可能互补, 即∠B的度数是20°或160°, 故选D. 9.A 解析:A 【分析】 过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得. 【详解】 解:如图,过点作, , , , , , , , , 故选:A. 【点睛】 本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键. 10.B 解析:B 【分析】 过作,过作,利用平行线的性质解答即可. 【详解】 解:过作,过作, , , ,, ,, ,,, , . 故选:B. 【点睛】 此题考查平行线的性质,关键是作出辅助线,利用平行线的性质解答. 二、填空题 11.【分析】 要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算. 【详解】 解:分10种情况讨论: (1)如图1,AD边与OB边平行时,∠BAD=45°或135°;; 解析: 【分析】 要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算. 【详解】 解:分10种情况讨论: (1)如图1,AD边与OB边平行时,∠BAD=45°或135°;; (2)如图2,当AC边与OB平行时,∠BAD=90°+45°=135°或45°; (3)如图3,DC边与AB边平行时,∠BAD=60°+90°=150°, (4)如图4,DC边与OB边平行时,∠BAD=135°+30°=165°, (5)如图5,DC边与OB边平行时,∠BAD=45°﹣30°=15°; (6)如图6,DC边与AO边平行时,∠BAD=15°+90°=105° (7)如图7,DC边与AB边平行时,∠BAD=30°, (8)如图8,DC边与AO边平行时,∠BAD=30°+45°=75°; 综上所述:∠BAD的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°. 故答案为:8. 【点睛】 本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键. 12.【分析】 先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1, 解析: 【分析】 先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,则可得出∠CE1B=∠ABE1+∠DCE1∠ABE∠DCE∠BEC;同理可得∠BE2C=∠ABE2+∠DCE2∠ABE1∠DCE1∠CE1B∠BEC;根据∠ABE2和∠DCE2的平分线,交点为E3,得出∠BE3C∠BEC;…据此得到规律∠En∠BEC,最后求得∠BEC的度数. 【详解】 如图1,过E作EF∥AB. ∵AB∥CD, ∴AB∥EF∥CD, ∴∠B=∠1,∠C=∠2. ∵∠BEC=∠1+∠2, ∴∠BEC=∠ABE+∠DCE; 如图2. ∵∠ABE和∠DCE的平分线交点为E1, ∴∠CE1B=∠ABE1+∠DCE1∠ABE∠DCE∠BEC. ∵∠ABE1和∠DCE1的平分线交点为E2, ∴∠BE2C=∠ABE2+∠DCE2∠ABE1∠DCE1∠CE1B∠BEC; ∵∠ABE2和∠DCE2的平分线,交点为E3, ∴∠BE3C=∠ABE3+∠DCE3∠ABE2∠DCE2∠CE2B∠BEC; … 以此类推,∠En∠BEC, ∴当∠En=1度时,∠BEC等于2n度. 故答案为:2n. 【点睛】 本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线. 13.27°. 【分析】 延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°. 【详解】 解:延长FA与直线MN交于点K, 由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD 解析:27°. 【分析】 延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°. 【详解】 解:延长FA与直线MN交于点K, 由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-∠FAD=45°-(90°-∠AFD)=∠AFD, 因为MN∥PQ,所以∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°, 所以∠ACD=∠AFD=(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°, 所以∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-∠BCA=45°-18°=27°. 故∠ACD的度数是:27°. 【点睛】 本题利用平行线、垂直、角平分线综合考查了角度的求解. 14.【分析】 延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可; 【详解】 延长AB,交两平行线与C、D, ∵直线l1∥l2,∠A=125°,∠B=85°, ∴,,, ∴, ∴, 解析: 【分析】 延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可; 【详解】 延长AB,交两平行线与C、D, ∵直线l1∥l2,∠A=125°,∠B=85°, ∴,,, ∴, ∴, 又∵∠1比∠2大4°, ∴, ∴, ∴; 故答案是. 【点睛】 本题主要考查了平行线的性质应用,准确计算是解题的关键. 15.2 【分析】 如图,连接CD,过点C作CG⊥AB于G.利用三角形面积公式求出CG,再根据S△BDO﹣S△COF=S△CDB﹣S△CDF=求解即可. 【详解】 解:如图,连接CD,过点C作CG⊥AB于 解析:2 【分析】 如图,连接CD,过点C作CG⊥AB于G.利用三角形面积公式求出CG,再根据S△BDO﹣S△COF=S△CDB﹣S△CDF=求解即可. 【详解】 解:如图,连接CD,过点C作CG⊥AB于G. ∵S△ABC=•AB•CG, ∴CG==4, ∵AD=CF=3,AB=7, ∴BD=AB﹣AD=7﹣3=4, ∴S△BDO﹣S△COF=S△CDB﹣S△CDF=, 故答案为:2. 【点睛】 本题考查三角形的面积,平移变换等知识,解题的关键是学会用转化的思想思考问题. 16.105° 【分析】 根据折叠得出∠DEF=∠HEF,求出∠DEF的度数,根据平行线的性质得出∠DEF+∠EFC=180°,代入求出即可. 【详解】 解:∵将长方形ABCD沿EF折叠,点D落在AB边上 解析:105° 【分析】 根据折叠得出∠DEF=∠HEF,求出∠DEF的度数,根据平行线的性质得出∠DEF+∠EFC=180°,代入求出即可. 【详解】 解:∵将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处, ∴∠DEF=∠HEF, ∵∠AEH=30°, ∴, ∵四边形ABCD是长方形, ∴AD∥BC, ∴∠DEF+∠EFC=180°, ∴∠EFC=180°-75°=105°, 故答案为:105°. 【点睛】 本题考查了平行线的性质,折叠的性质等知识点,能求出∠DEF=∠HEF和∠DEF+∠EFC=180°是解此题的关键. 17.33 【分析】 根据求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论. 【详解】 解:∵,, ∴∠ 解析:33 【分析】 根据求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论. 【详解】 解:∵,, ∴∠,且 ∴ ∵∠CAD=24° ∴∠BAC=90°-∠CAD=90°-24°=66°, ∵AE是∠BAC的平分线 ∴∠EAB= ∵, ∴ 故答案为:33 【点睛】 此题主要考查了平行线的性质,角平分线的定义,准确识图,灵活运用相关知识是解题的关键. 18.131 【分析】 过点C作CH∥MN,根据平行线的性质求出∠NEC即可. 【详解】 解:过点C作CH∥MN, ∵, ∴CH∥PQ, ∴, ∵, ∴, ∵CH∥MN, ∴, ∴ 故答案为:131. 解析:131 【分析】 过点C作CH∥MN,根据平行线的性质求出∠NEC即可. 【详解】 解:过点C作CH∥MN, ∵, ∴CH∥PQ, ∴, ∵, ∴, ∵CH∥MN, ∴, ∴ 故答案为:131. 【点睛】 本题考查了平行线的性质与判定,解题关键是恰当作平行线,根据平行线的性质进行推理计算. 19.3 【分析】 (1)根据平行线的性质即可得到答案; (2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF,可得∠AEC<148°, 解析:3 【分析】 (1)根据平行线的性质即可得到答案; (2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF,可得∠AEC<148°,即可判断是否正确; (3)根据翻转的性质可得∠GEF=∠C′EF,又因为∠C′EG=64°,根据平行线性质即可得到∠BGE=∠C′EG=64°,即可判断是否正确; (4)根据对顶角的性质得:∠CGF=∠BGE=64°,根据平行线得性质即可得:∠BFD=180°-∠CGF即可得到结果. 【详解】 解:(1)∵,∠EFB=32°, ∴∠C′EF=∠EFB=32°,故本小题正确; (2)∵AE∥BG,∠EFB=32°, ∴∠AEF=180°-∠EFB=180°-32°=148°, ∵∠AEF=∠AEC+∠GEF, ∴∠AEC<148°,故本小题错误; (3)∵∠C′EF=32°, ∴∠GEF=∠C′EF=32°, ∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°, ∵AC′∥BD′, ∴∠BGE=∠C′EG=64°,故本小题正确; (4)∵∠BGE=64°, ∴∠CGF=∠BGE=64°, ∵, ∴∠BFD=180°-∠CGF=180°-64°=116°,故本小题正确. 故正确的为:(1)(3)(4)共3个, 故答案为:3. 【点睛】 本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键. 20.【分析】 过点P1作PG∥AB∥CD,根据平行线的性质:两直线平行,内错角相等即可证得,再根据角平分线的定义总结规律可得. 【详解】 解:过点作∥AB,可得∥CD, 设,, ∴,, 解析: 【分析】 过点P1作PG∥AB∥CD,根据平行线的性质:两直线平行,内错角相等即可证得,再根据角平分线的定义总结规律可得. 【详解】 解:过点作∥AB,可得∥CD, 设,, ∴,, ∴; 同理可得:,,..., ∵平分,平分, ∴, , ..., ∴, 故答案为:,. 【点睛】 本题考查了平行线性质的应用和角平分线的定义,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会探究规律,利用规律解决问题,属于中考常考题型. 三、解答题 21.(1)证明见解析;(2);(3). 【分析】 (1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证; (2)过点作,同(1)的方法,先根据平行线的性质得出,,从而可得,再根据垂直的定义可得,由此即可得出结论; (3)过点作,延长至点,先根据平行线的性质可得,,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案. 【详解】 证明:(1)如图,过点作, , , , ,即, , ; (2)如图,过点作, , , , ,即, , , , , ; (3)如图,过点作,延长至点, , , , , 平分,平分, , 由(2)可知,, , 又, . 【点睛】 本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键. 22.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α 【分析】 (1)根据平行线的性质与判定可求解; (2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解; (3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解. 【详解】 解:(1)如图1,过点P作PM∥AB, ∴∠1=∠AEP. 又∠AEP=40°, ∴∠1=40°. ∵AB∥CD, ∴PM∥CD, ∴∠2+∠PFD=180°. ∵∠PFD=130°, ∴∠2=180°-130°=50°. ∴∠1+∠2=40°+50°=90°. 即∠EPF=90°. (2)∠PFC=∠PEA+∠P. 理由:过P点作PN∥AB,则PN∥CD, ∴∠PEA=∠NPE, ∵∠FPN=∠NPE+∠FPE, ∴∠FPN=∠PEA+∠FPE, ∵PN∥CD, ∴∠FPN=∠PFC, ∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P; (3)令AB与PF交点为O,连接EF,如图3. 在△GFE中,∠G=180°-(∠GFE+∠GEF), ∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE, ∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE, ∵由(2)知∠PFC=∠PEA+∠P, ∴∠PEA=∠PFC-α, ∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC, ∴∠GEF+∠GFE=(∠PFC−α)+∠PFC+180°−∠PFC=180°−α, ∴∠G=180°−(∠GEF+∠GFE)=180°−180°+α=α. 【点睛】 本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键. 23.(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD. 【分析】 (1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC; (2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B; (3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD. 【详解】 解:(1)是,理由如下: 要使AD平分∠EAC, 则要求∠EAD=∠CAD, 由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD, 则当∠ACB=∠B时,有AD平分∠EAC; 故答案为:是; (2)∠B=∠ACB,理由如下: ∵AD平分∠EAC, ∴∠EAD=∠CAD, ∵AD∥BC, ∴∠B=∠EAD,∠ACB=∠CAD, ∴∠B=∠ACB. (3)∵AC⊥BC, ∴∠ACB=90°, ∵∠EBF=50°, ∴∠BAC=40°, ∵AD∥BC, ∴AD⊥AC. 【点睛】 此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键. 24.(1);(2)①,理由见解析;②图见解析,或 【分析】 (1)作PQ∥EF,由平行线的性质,即可得到答案; (2)①过作交于,由平行线的性质,得到,,即可得到答案; ②根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与①同理,利用平行线的性质,即可求出答案. 【详解】 解:(1)作PQ∥EF,如图: ∵, ∴, ∴,, ∵ ∴; (2)①; 理由如下:如图, 过作交于, ∵, ∴, ∴,, ∴; ②当点在延长线时,如备用图1: ∵PE∥AD∥BC, ∴∠EPC=,∠EPD=, ∴; 当在之间时,如备用图2: ∵PE∥AD∥BC, ∴∠EPD=,∠CPE=, ∴. 【点睛】 本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系. 25.(1)90°;(2)见解析;(3)不变,180° 【分析】 (1)根据邻补角的定义及角平分线的定义即可得解; (2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解; (3),过,分别作,,根据平行线的性质及平角的定义即可得解. 【详解】 解(1),分别平分和, ,, , ; (2), ,即, , 是的平分线, , , 又, , 又在的内部, 平分; (3)如图,不发生变化,,过,分别作,, 则有, ,,,, ,, , ,, , , 不变. 【点睛】 此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 下册 相交 平行线 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文