主要薄膜光伏电池技术及制备工艺介绍.doc
《主要薄膜光伏电池技术及制备工艺介绍.doc》由会员分享,可在线阅读,更多相关《主要薄膜光伏电池技术及制备工艺介绍.doc(42页珍藏版)》请在咨信网上搜索。
1、H:精品资料建筑精品网原稿ok(删除公文)建筑精品网5未上传百度主要薄膜光伏电池( 非/微晶硅、 CIGS) 技术及制备工艺介绍第一章 薄膜光伏电池技术及发展概况简述一、 全球主要薄膜光伏电池技术简介非晶硅CIGSCdTe主要材料硅铜、 铟、 镓、 硒化合物碲、 镉化合物光吸收层厚度0.2-0.5m1m1m光吸收能力非直接能隙材料, 可吸收的光谱有限2、 吸收光子能量范围1.1-1.7ev直接能隙材料, 吸收范围广2、 吸收光子能量范围1.02-1.68ev直接能隙材料, 吸收范围广2、 吸收光子能量范围1.45ev发电稳定性1、 稳定性较差有光致衰减效应2、 非/微叠层电池可改进光致衰减效应
2、稳定性高, 无光致衰减效应稳定性高, 无光致衰减效应产业化转化效率非/微叠层8.5-9.5%10-12%8.5-10.5%材料特性硅烷为主要原材料, 因用量少而供应充分硒/铟为稀有金属, 难以应付全面性大量的市场需求2、 缓冲层硫化镉具有潜在毒性碲为稀有金属, 难以应付全面性大量的市场需求2、 碲、 镉为有毒元素, 受限环保法规及消费心理障碍材料控制性产业界用硅技术成熟四元素难以精准控制二元素较CIGS易控制材料成本高品质TCO玻璃价格高靶材成本会比基板高材料成本约占5成常见的成膜技术1、 化学气相沉积法(CVD)2 溅射法(sputter)溅射法( sputter)蒸镀法( Evaporat
3、ion)2、 适用多种成膜技术图: 薄膜光伏电池结构二、 薄膜光伏电池发展概况(一) 非晶硅薄膜电池的大规模应用堪忧中国有超过20 家非晶硅薄膜电池厂商, 共约1.1GW 产能, 其中800MW的转换效率为6%-7%, 300MW 的转换效率高于8.5%, 最高的转换效率能够达到9%-10%, 生产成本为约0.8 美元/W。如果非晶硅薄膜电池的转换效率为10, 组件的价格低于晶体硅电池的75, 才有竞争力。随着今年晶硅电池成本的下降和转换效率的稳步提升, 年7月, 美国应用材料公司(Applied Materials)宣布, 停止向新客户销售其SunFab 系列整套非晶硅薄膜技术。8 月, 无
4、锡尚德叫停旗下的非晶硅薄膜太阳能组件生产线的业务。非晶硅薄膜电池要继续扩张市场份额, 还需要突破其转换率低和衰减性等问题, 建立市场信心。另外, 非晶硅薄膜电池在半透明BIPV 玻璃幕领域具有相对优势, 但当前BIPV 仍面临透光度和转换效率的两难困境, 大规模应用尚未推行, 非晶硅薄膜电池前景堪忧。(二) CdTe薄膜电池难以成为国内企业的发展重点CdTd 薄膜电池方面, 美国First Solar 一枝独秀。First Solar 组件效率已达11, 成本降低到0.76 美元/W, 在所有太阳电池中成本最低。First Solar 今年产能约1.4GW,预计 、 年分别达到2.1GW 、
5、2.7GW。在电池制造技术和装备制造, 市场份额和规模效应方面, FirstSolar 已经占据了绝对优势, 国内企业难以有较大发展, 当前国内介入CdTe 电池的企业仅三家, 且均未实现大规模量产。另一方面, 碲属于稀有元素, 在地壳里仅占1x10-6 。已探明储量14.9 万吨, 该技术的未来发展空间受限。预计CdTe 技术不会成为中国企业发展薄膜电池的主要方向。(三) CIGS技术前景诱人, 成为投资亮点虽然当前全球有上百家企业从事CIGS 技术的研发, 但突破技术和设备瓶颈, 能够生产大面积组件的企业不多。技术相对成熟, 单机年产量超过10MW 的生产线更少, 当前仅有如Johanna
6、 Solar(德国)、 WurthSolar(德国)、 Global Solar(美国)、 Showa Shell(日本)、 Honda Soltec( 日本) 等公司。CIGS 的工艺和设备要求复杂, 当前国际上尚未形成标准生产工艺和技术垄断企业。中国企业有望经过自主创新, 引进设备或与国外设备企业合作开发等形式加快CIGS 薄膜电池的产业化。例如, 孚日引进Johanna 的60MW 生产线, 哈高科与美国普尼合作研发CIGS 的生产工艺。表: 各种技术特性对比表: 各技术的发展现状和前景第二章 非/微晶硅电池技术及制备工艺介绍硅基薄膜太阳电池除了具有薄膜太阳电池共有的省材、 低能耗、 便
7、于大面积连续生产等优势外, 还具有原材料丰富、 无毒、 无污染、 能耗低等优点, 是当前薄膜太阳电池的重要研发方向。 (一) 非晶硅电池的结构与工作原理非晶硅太阳电池是以玻璃、 不锈钢及特种塑料为衬底的薄膜太阳电池, 结构如下图所示。第一层为普通玻璃,是电池的载体。第二层为绒面的TCO, 即透明导电膜, 一方面光穿过它被电池吸收, 它的透过率要求要高; 另一方面作为电池的一个电极, 要求它能导电。TCO制备成绒面能起到减少反射光的作用。太阳能电池就是以这两层为衬底生产的。电池的第一层为P层, 即窗口层。下面是i层, 即太阳能电池的本征层, 光生载流子主要在这一层产生。再下面为n层, 起到连接i
8、和背电极的作用。最后是背电极和Al/Ag电极。 当前制备背电极一般采用掺铝ZnO(A1),或简称AZO。图: 非晶硅太阳能电池结构图 为减少串联电阻, 一般见激光器将TCO膜、 非晶硅(a-si)膜和铝(Al)电极膜分别切割成条状, 如下图所示。国际上采用的标准条宽约1cm, 称为一个子电池, 用内部连接的方式将各子电池串连起来, 因此集成型电池的输出电流为每个子电池的电流, 总输出电压为各个子电池的串联电压。在实际应用中, 可根据电流、 电压的需要选择电池的结构和面积, 制成非晶硅太阳电池。图: 非晶硅太阳电池组件非晶硅太阳电池的工作原理是基于半导体的光伏效应。当太阳光照射到电池上时, 电池
9、吸收光能产生光生电子空穴对, 在电池内建电场Vb的作用下, 光生电子和空穴被分离, 空穴漂移到P边, 电子漂移到N边, 形成光生电动势VL, VL 与内建电势Vb相反, 当VL = Vb时, 达到平衡; IL = 0, VL达到最大值, 称之为开路电压Voc ; 当外电路接通时, 则形成最大光电流, 称之为短路电流Isc, 此时VL= 0;当外电路加入负载时, 则维持某一光电压VL和光电流IL。图: I-V特性曲线 (二) 非/微晶硅太阳电池的原理及结构非晶硅尽管是一种很好的太阳能电池材料, 但由于它的光学带隙为1.7eV, 使得材料本身对太阳辐射光谱的长波区域不敏感, 这样就在某种程序上限制
10、了非晶硅太阳能电池的转换效率。光电效率也会随着光照时间的延续而衰减, 即所谓的光致衰退S一W效应, 导致电池性能不稳定。解决的途径就是生产叠层太阳能电池。另外, 非晶硅层仅对可见光有吸收作用, 而微晶硅层对波长较长的远红外部分有很好的吸收作用, 而且几乎不发生衰减, 因此这种叠层技术能够实现很好的转换效率并明显降低衰减率, 世界光伏学家把这种技术誉为”最有希望的薄膜技术”。如下图所示。图 : 非晶硅与微晶硅叠层电池提高转换效率原理叠层太阳能电池是由在制备的p、 i、 n层单结太阳能电池上再沉积一个或多个P-i-n子电池制得的。叠层太阳能电池能提高电池的转换效率、 解决单结电池不稳定性的关键问题
11、在于: 它把不同禁带宽度的材科组合在一起, 提高了光谱的响应范围; 顶层电池的i层较薄, 光照产生的电场强度变化不大, 保证i层中的光生载流子抽出; 底层电池产生的载流子约为单电池的一半, 光致衰退效应减小; 叠层太阳能电池各子电池是串联在一起的。图: 非/微晶硅薄膜太阳能电池的层叠结构 从技术发展的路线来看, 当前硅基薄膜太阳能电池已经发展到第四代非晶硅/微晶硅双结叠层电池。这种非晶硅与微晶硅叠层的基本结构将成为未来硅薄膜太阳能电池的主流发展趋势。非/微晶硅叠层电池有以下优点: a、 生产所需的原材料丰富; b、 其生产、 操作、 处理对环境无污染; c、 要求的温度低, 因此可用的材料便宜
12、, 如悬浮玻璃等; d、 生产过程中耗能低, 回报率高; e、 大面积自动化生产; f、 高温性能好, 弱光响应好, 使得充电效率高; g、 短波响应优于晶体硅太阳能电池等优点。(三) 非/微晶硅太阳电池的工艺方案在制造方法方面有电子回旋共振法、 光化学气相沉积法、 直流辉光放电法、 射频辉光放电法、 溅谢法和热丝法等。特别是射频辉光放电法, 由于其低温过程(200), 易于实现大面积和大批量连续生产, 现已成为国际公认的成熟技术。非/微晶硅a-SiC和c-SiC材料比p型a-Si具有更宽的光学带隙, 因此减少了对光的吸收, 使到达i层的光增加; 加之梯度界面层的采用, 改进了a-SiC/a-
13、Si异质结界面光电子的输运特性。在增加长波响应方面, 采用了绒面TCO膜、 绒面多层背反射电极(ZnO/Ag/Al)和多带隙叠层结构, 即glass/TCO/p1i1n1/p2i2n2/p3i3n3/ZnO/Ag/Al结构, 绒面TCO膜和多层背反射电极减少了光的反射和透射损失, 并增加了光在i层的传播路程, 从而增加了光在i层的吸收。多带隙结构中, i层的带隙宽度从光入射方向开始依次减小, 以便分段吸收太阳光, 达到拓宽光谱响应、 提高转换效率之目的。在提高叠层电池效率方面还采用了渐变带隙设计、 隧道结中的微晶化掺杂层等, 以改进载流子收集。图: 工艺流程(四) 非/微晶硅薄膜电池生产线规划
14、与主要设备图: 非/微晶硅叠层电池生产线示意图非/微晶硅薄膜太阳能电池的生产线主要包括如下设备: 导电玻璃磨边设备, 导电玻璃清洗设备, 大型PECVD生产设备( 包括辅助设备) , 红外激光、 绿激光刻线设备, 大型磁控溅射生产设备, 组件测试设备。1. 导电玻璃磨边设备2. 导电玻璃清洗设备为了初步清洗基板, 这里使用一种为光伏应用量身定做的清洗系统。这一系统主要由PP板焊接而成, 其中包括刷拭单元、 粗洗、 精洗、 超精洗和甩干单元。本系统使用去离子水( 15Mohm) 水由客户提供, 最后气体出排扇过滤器被抽出。有3个直冲清洗系统: 粗洗、 精洗、 超精洗。3. 大型PECVD生产设备
15、生产线将会配备3条, 同时也能够配备4条PECVD系统, PECVD系统的主要作用是: 给非微晶硅叠层薄膜太阳能沉积镀膜的一个系统方法, 采用PECVD法制备氮化硅薄膜时, 沉积条件对薄膜性质的影响如下: ( 1) 当衬底温度升高时, 沉积速率增大, 氮化硅薄膜的含H量和SIN比下降, 折射率上升, 腐蚀速率下降, 衬底温度的变化对氮化硅薄膜的腐蚀速率影响显着。( 2) 当射频功率增大时, 生成的氮化硅薄膜结构致密, 钝化性能提高, 折射率上升, 腐蚀速率下降, 但射频功率不能过大, 否则沉积速率过快, 膜的均匀性下降, 结构疏松, 针孔密度增大, 钝化性退化。当射频频率增大时, 沉积速率随之
16、增大, 生成薄膜的均匀性好, 但膜的密度降低, 沉积速率主要取决于射频功率。( 3) 当SIH4/NH3流量比增加时, 氮化硅薄膜折射率上升, SI/N比上升, 腐蚀速度和介电强度下降, 涨SIH4/NH3=110时, 沉积的氮化硅薄膜特性最好, SIH4/NH3流量比对沉积速率基本无影响, 但在很大程度上决定了氮化硅薄膜的折射率。( 4) 当反应压强增大时, 沉积速率增大, 片间均匀性变差, 氮化硅薄膜的折射率上升, 钝化性能增强。( 5) 当SI/N比增大, 氮化硅薄膜折射率上升, 电阴率和动态介电常数下降, 电绝缘性能变差, 当薄膜中的SI/N比接近化学计量比0.75时, 氮化硅薄膜的电
17、学特性和钝化性能大大改进。背电极磁射7度垂直内线溅射系统A1500V-7是用来在玻璃板上镀氧化锌层的。A1500V-7是一个连续的流动系统, 能够源源不断地接收基板。可导电的氧化锌铝( 大约1000纳米的厚度) 经过DC磁场在氩氧环境下沉淀。4. 红外激光、 绿激光刻线设备激光刻划由于对各种材料有适应性好、 刻划速度快、 成本低、 对环境污染小等优点而成为实现薄膜太阳能电池串联集成的有效手段。当前国外有First Solar, ANTEC BmTH, BP等公司激光刻划制备了碲化铺路薄膜太阳能电池。当前进行了CxtTc薄膜材料的激光刻划研究, 并在此基础上制备了集成碲化镉薄膜太阳能电池。5.
18、大型磁控溅射生产设备为了TCO镀膜表面的绒度, 这里使用一套带有0.5%浓度盐酸的自动喷射器的蚀刻系统, 这套蚀刻系统需要洁净的去离子水。本套蚀刻系统由以下部分组成: 内置电源的传动轴带有3X3喷雾器和旋转尼龙刷的刷拭单元蚀刻单元。在室温下用尝试为0.5%的稀盐酸溶液进行蚀刻。低压强和大流量的排气系统( 由客户提供) 维持气体从工作台的外侧进入处理室, 当装卸玻璃基板的滑窗打开时, 此操作暂停。此蚀刻单元配有一个泄漏传感器, 由拍窗过滤器排出, 外置电源的传动轴。以定能量的粒子( 离子或中性原子、 分子) 轰击固体表面, 使固体近表面的原子或分子获得足够大的能量而逸出固体表面的。溅射在一定的真
19、空状态下进行。溅射用的轰击粒子一般是带理电荷的惰性气体离子, 用得最多的是氩离子。氩电离后, 氩离子在电场加速下获得动能轰击靶极。当氩离子能量低于5电子伏时, 仅对靶极最外表怪产生作用, 主要使靶极表面原来吸附的杂质脱附。当氩离子能量达到靶极原子的结合能( 约为靶极材料的升华热) 时, 引起靶极表面的原子迁移, 产生表面损伤。轰击粒子的能量超过靶极材料升华热的四倍时, 原子被推出晶格位置成为汽相逸出而产生溅射。对于大多数金属, 溅射阈能约为1025电子伏。溅射工艺主要用于溅射刻蚀和薄膜淀积两个方面。溅射刻蚀时, 被刻蚀的材料置于薹极位置, 受氩离子的轰击进行刻蚀。刻蚀速率与薹极材料的溅射产额、
20、 离子流密度和溅射室的真空度等因素有关。溅射刻蚀时, 应尽可能从溅射室除去溅出的靶极原子。常见的方法是引入反应气体, 使之与溅出的靶极原子反应生成挥发性气体, 经过真空系统从溅射室中排出。淀积薄膜时, 溅射源置于靶极, 受氩离子轻击后发生溅射。如果靶材是单质的, 则在衬底上生成靶极物质的单质薄膜, 若在溅射室内有意识地引入反应气体, 使之与溅出的靶材原子发生化学反应而淀积于衬底, 便可形成靶极材料的化合物薄膜。一般, 制取化合物或合金薄膜是用化合物或合金靶直接进行溅射而得。在溅射中, 溅出的原子是与具有数千电子伏的高能离子交换能量飞溅出来的, 其能量较高, 往往比蒸发原子高出12个数量级, 因
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 主要 薄膜 电池 技术 制备 工艺 介绍
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。