2020-2021中考数学压轴题专题复习—二次函数的综合含详细答案.doc
《2020-2021中考数学压轴题专题复习—二次函数的综合含详细答案.doc》由会员分享,可在线阅读,更多相关《2020-2021中考数学压轴题专题复习—二次函数的综合含详细答案.doc(33页珍藏版)》请在咨信网上搜索。
2020-2021中考数学压轴题专题复习—二次函数的综合含详细答案 一、二次函数 1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点. (1)求抛物线的解析式; (2)当点P运动到什么位置时,△PAB的面积有最大值? (3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由. 【答案】(1)抛物线解析式为y=﹣x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6). 【解析】 【分析】(1)利用待定系数法进行求解即可得; (2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN•AG+PN•BM=PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得; (3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案. 【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0), ∴设抛物线解析式为y=a(x﹣6)(x+2), 将点A(0,6)代入,得:﹣12a=6, 解得:a=﹣, 所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6; (2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G, 设直线AB解析式为y=kx+b, 将点A(0,6)、B(6,0)代入,得: , 解得:, 则直线AB解析式为y=﹣x+6, 设P(t,﹣t2+2t+6)其中0<t<6, 则N(t,﹣t+6), ∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t, ∴S△PAB=S△PAN+S△PBN =PN•AG+PN•BM =PN•(AG+BM) =PN•OB =×(﹣t2+3t)×6 =﹣t2+9t =﹣(t﹣3)2+, ∴当t=3时,△PAB的面积有最大值; (3)如图2, ∵PH⊥OB于H, ∴∠DHB=∠AOB=90°, ∴DH∥AO, ∵OA=OB=6, ∴∠BDH=∠BAO=45°, ∵PE∥x轴、PD⊥x轴, ∴∠DPE=90°, 若△PDE为等腰直角三角形, 则∠EDP=45°, ∴∠EDP与∠BDH互为对顶角,即点E与点A重合, 则当y=6时,﹣x2+2x+6=6, 解得:x=0(舍)或x=4, 即点P(4,6). 【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键. 2.在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”.已知抛物线与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C. (1)填空:该抛物线的“衍生直线”的解析式为 ,点A的坐标为 ,点B的坐标为 ; (2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“衍生三角形”,求点N的坐标; (3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由. 【答案】(1);(-2,);(1,0); (2)N点的坐标为(0,),(0,); (3)E(-1,-)、F(0,)或E(-1,),F(-4,) 【解析】 【分析】 (1)由抛物线的“衍生直线”知道二次函数解析式的a即可;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求出ON的长,可求出N点的坐标;(3)分别讨论当AC为平行四边形的边时,当AC为平行四边形的对角线时,求出满足条件的E、F坐标即可 【详解】 (1)∵,a=,则抛物线的“衍生直线”的解析式为; 联立两解析式求交点,解得或, ∴A(-2,),B(1,0); (2)如图1,过A作AD⊥y轴于点D, 在中,令y=0可求得x= -3或x=1, ∴C(-3,0),且A(-2,), ∴AC= 由翻折的性质可知AN=AC=, ∵△AMN为该抛物线的“衍生三角形”, ∴N在y轴上,且AD=2, 在Rt△AND中,由勾股定理可得 DN=, ∵OD=, ∴ON=或ON=, ∴N点的坐标为(0,),(0,); (3)①当AC为平行四边形的边时,如图2 ,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF, ∴∠ ACK=∠ EFH, 在△ ACK和△ EFH中 ∴△ ACK≌△ EFH, ∴FH=CK=1,HE=AK=, ∵抛物线的对称轴为x=-1, ∴ F点的横坐标为0或-2, ∵点F在直线AB上, ∴当F点的横坐标为0时,则F(0,),此时点E在直线AB下方, ∴E到y轴的距离为EH-OF=-=,即E的纵坐标为-, ∴ E(-1,-); 当F点的横坐标为-2时,则F与A重合,不合题意,舍去; ②当AC为平行四边形的对角线时, ∵ C(-3,0),且A(-2,), ∴线段AC的中点坐标为(-2.5, ), 设E(-1,t),F(x,y), 则x-1=2×(-2.5),y+t=, ∴x= -4,y=-t, -t=-×(-4)+,解得t=, ∴E(-1,),F(-4,); 综上可知存在满足条件的点F,此时E(-1,-)、(0,)或E(-1,),F(-4,) 【点睛】 本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题 3.如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=. (1)求抛物线的解析式; (2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF; (3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由. 【答案】(1)抛物线的解析式为y=x2﹣3x﹣4;(2)证明见解析;(3)点Q的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】 (1)先求得点A的坐标,然后依据抛物线过点A,对称轴是x=列出关于a、c的方程组求解即可; (2)设P(3a,a),则PC=3a,PB=a,然后再证明∠FPC=∠EPB,最后通过等量代换进行证明即可; (3)设E(a,0),然后用含a的式子表示BE的长,从而可得到CF的长,于是可得到点F的坐标,然后依据中点坐标公式可得到,,从而可求得点Q的坐标(用含a的式子表示),最后,将点Q的坐标代入抛物线的解析式求得a的值即可. 【详解】 (1)当y=0时,,解得x=4,即A(4,0),抛物线过点A,对称轴是x=,得, 解得,抛物线的解析式为y=x2﹣3x﹣4; (2)∵平移直线l经过原点O,得到直线m, ∴直线m的解析式为y=x. ∵点P是直线1上任意一点, ∴设P(3a,a),则PC=3a,PB=a. 又∵PE=3PF, ∴. ∴∠FPC=∠EPB. ∵∠CPE+∠EPB=90°, ∴∠FPC+∠CPE=90°, ∴FP⊥PE. (3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a. ∵CF=3BE=18﹣3a, ∴OF=20﹣3a. ∴F(0,20﹣3a). ∵PEQF为矩形, ∴,, ∴Qx+6=0+a,Qy+2=20﹣3a+0, ∴Qx=a﹣6,Qy=18﹣3a. 将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去). ∴Q(﹣2,6). 如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a﹣6. ∵CF=3BE=3a﹣18, ∴OF=3a﹣20. ∴F(0,20﹣3a). ∵PEQF为矩形, ∴,, ∴Qx+6=0+a,Qy+2=20﹣3a+0, ∴Qx=a﹣6,Qy=18﹣3a. 将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=8或a=4(舍去). ∴Q(2,﹣6). 综上所述,点Q的坐标为(﹣2,6)或(2,﹣6). 【点睛】 本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a的式子表示点Q的坐标是解题的关键. 4.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b. (1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示); (2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式; (3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围. 【答案】(1)b=﹣2a,顶点D的坐标为(﹣,﹣);(2);(3) 2≤t<. 【解析】 【分析】 (1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标; (2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可; (3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围. 【详解】 解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0), ∴a+a+b=0,即b=-2a, ∴y=ax2+ax+b=ax2+ax-2a=a(x+)2-, ∴抛物线顶点D的坐标为(-,-); (2)∵直线y=2x+m经过点M(1,0), ∴0=2×1+m,解得m=-2, ∴y=2x-2, 则, 得ax2+(a-2)x-2a+2=0, ∴(x-1)(ax+2a-2)=0, 解得x=1或x=-2, ∴N点坐标为(-2,-6), ∵a<b,即a<-2a, ∴a<0, 如图1,设抛物线对称轴交直线于点E, ∵抛物线对称轴为, ∴E(-,-3), ∵M(1,0),N(-2,-6), 设△DMN的面积为S, ∴S=S△DEN+S△DEM=|( -2)-1|•|--(-3)|=−−a, (3)当a=-1时, 抛物线的解析式为:y=-x2-x+2=-(x+)2+, 由, -x2-x+2=-2x, 解得:x1=2,x2=-1, ∴G(-1,2), ∵点G、H关于原点对称, ∴H(1,-2), 设直线GH平移后的解析式为:y=-2x+t, -x2-x+2=-2x+t, x2-x-2+t=0, △=1-4(t-2)=0, t=, 当点H平移后落在抛物线上时,坐标为(1,0), 把(1,0)代入y=-2x+t, t=2, ∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<. 【点睛】 本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大. 5.如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13. (1)求抛物线的解析式; (2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC=ED,求点E的坐标; (3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由. 【答案】(1)y=x2﹣2x﹣3;(2)E点坐标为(,﹣);(3)点Q的坐标为(﹣3,12)或(2,﹣3).理由见解析. 【解析】 【分析】 (1)由根与系数的关系可得x1+x2=m,x1•x2=﹣(m+1),代入x12+x22﹣x1x2=13,求出m1=2,m2=﹣5.根据OA<OB,得出抛物线的对称轴在y轴右侧,那么m=2,即可确定抛物线的解析式; (2)连接BE、OE.根据直角三角形斜边上的中线等于斜边的一半得出BE=CD=CE.利用SSS证明△OBE≌△OCE,得出∠BOE=∠COE,即点E在第四象限的角平分线上,设E点坐标为(m,﹣m),代入y=x2﹣2x﹣3,求出m的值,即可得到E点坐标; (3)过点Q作AC的平行线交x轴于点F,连接CF,根据三角形的面积公式可得S△ACQ=S△ACF.由S△ACQ=2S△AOC,得出S△ACF=2S△AOC,那么AF=2OA=2,F(1,0).利用待定系数法求出直线AC的解析式为y=﹣3x﹣3.根据AC∥FQ,可设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,利用待定系数法求出直线FQ的解析式为y=﹣3x+3,把它与抛物线的解析式联立,得出方程组,求解即可得出点Q的坐标. 【详解】 (1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0), ∴x1+x2=m,x1•x2=﹣(m+1), ∵x12+x22﹣x1x2=13, ∴(x1+x2)2﹣3x1x2=13, ∴m2+3(m+1)=13, 即m2+3m﹣10=0, 解得m1=2,m2=﹣5. ∵OA<OB, ∴抛物线的对称轴在y轴右侧, ∴m=2, ∴抛物线的解析式为y=x2﹣2x﹣3; (2)连接BE、OE. ∵在Rt△BCD中,∠CBD=90°,EC=ED, ∴BE=CD=CE. 令y=x2﹣2x﹣3=0,解得x1=﹣1,x2=3, ∴A(﹣1,0),B(3,0), ∵C(0,﹣3), ∴OB=OC, 又∵BE=CE,OE=OE, ∴△OBE≌△OCE(SSS), ∴∠BOE=∠COE, ∴点E在第四象限的角平分线上, 设E点坐标为(m,﹣m),将E(m,﹣m)代入y=x2﹣2x﹣3, 得m=m2﹣2m﹣3,解得m=, ∵点E在第四象限, ∴E点坐标为(,﹣); (3)过点Q作AC的平行线交x轴于点F,连接CF,则S△ACQ=S△ACF. ∵S△ACQ=2S△AOC, ∴S△ACF=2S△AOC, ∴AF=2OA=2, ∴F(1,0). ∵A(﹣1,0),C(0,﹣3), ∴直线AC的解析式为y=﹣3x﹣3. ∵AC∥FQ, ∴设直线FQ的解析式为y=﹣3x+b, 将F(1,0)代入,得0=﹣3+b,解得b=3, ∴直线FQ的解析式为y=﹣3x+3. 联立, 解得,, ∴点Q的坐标为(﹣3,12)或(2,﹣3). 【点睛】 本题是二次函数综合题,其中涉及到一元二次方程根与系数的关系,求二次函数的解析式,直角三角形的性质,全等三角形的判定与性质,二次函数图象上点的坐标特征,三角形的面积,一次函数图象与几何变换,待定系数法求直线的解析式,抛物线与直线交点坐标的求法,综合性较强,难度适中.利用数形结合与方程思想是解题的关键. 6.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D. (1)求二次函数的表达式; (2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标; (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积. 【答案】(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处. 【解析】 【分析】 (1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式; (2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标; (3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处. 【详解】 解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c, 解得:b=﹣4,c=3, ∴二次函数的表达式为:y=x2﹣4x+3; (2)令y=0,则x2﹣4x+3=0, 解得:x=1或x=3, ∴B(3,0), ∴BC=3, 点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1, ①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3 ∴P1(0,3+3),P2(0,3﹣3); ②当PB=PC时,OP=OB=3, ∴P3(0,-3); ③当BP=BC时, ∵OC=OB=3 ∴此时P与O重合, ∴P4(0,0); 综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0); (3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t, ∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1, 当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处. 7.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B. (1)判断顶点M是否在直线y=4x+1上,并说明理由. (2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围. (3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小. 【答案】(1)点M在直线y=4x+1上;理由见解析;(2)x的取值范围是x<0或x>5;(3)①当0<b<时,y1>y2,②当b=时,y1=y2,③当<b<时,y1<y2. 【解析】 【分析】 (1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可得答案; (2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案; (3)根据解方程组,可得顶点M的纵坐标的范围,根据二次函数的性质,可得答案. 【详解】 (1)点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点, ∴M的坐标是(b,4b+1), 把x=b代入y=4x+1,得y=4b+1, ∴点M在直线y=4x+1上; (2)如图1, 直线y=mx+5交y轴于点B, ∴B点坐标为(0,5)又B在抛物线上, ∴5=﹣(0﹣b)2+4b+1=5,解得b=2, 二次函数的解析是为y=﹣(x﹣2)2+9, 当y=0时,﹣(x﹣2)2+9=0,解得x1=5,x2=﹣1, ∴A(5,0). 由图象,得 当mx+5>﹣(x﹣b)2+4b+1时,x的取值范围是x<0或x>5; (3)如图2, ∵直线y=4x+1与直线AB交于点E,与y轴交于F, A(5,0),B(0,5)得 直线AB的解析式为y=﹣x+5, 联立EF,AB得方程组, 解得, ∴点E(,),F(0,1). 点M在△AOB内, 1<4b+1<, ∴0<b<. 当点C,D关于抛物线的对称轴对称时,b﹣=﹣b,∴b=, 且二次函数图象开口向下,顶点M在直线y=4x+1上, 综上:①当0<b<时,y1>y2, ②当b=时,y1=y2, ③当<b<时,y1<y2. 【点睛】 本题考查了二次函数综合题,解(1)的关键是把点的坐标代入函数解析式检验;解(2)的关键是利用函数图不等式的关系:图象在上方的函数值大;解(3)的关键是解方程组得出顶点M的纵坐标的范围,又利用了二次函数的性质:a<0时,点与对称轴的距离越小函数值越大. 8.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+n与x轴、y轴分别交于B、C两点,抛物线y=ax2+bx+3(a≠0)过C、B两点,交x轴于另一点A,连接AC,且tan∠CAO=3. (1)求抛物线的解析式; (2)若点P是射线CB上一点,过点P作x轴的垂线,垂足为H,交抛物线于Q,设P点横坐标为t,线段PQ的长为d,求出d与t之间的函数关系式,并写出相应的自变量t的取值范围; (3)在(2)的条件下,当点P在线段BC上时,设PH=e,已知d,e是以y为未知数的一元二次方程:y2-(m+3)y+(5m2-2m+13)="0" (m为常数)的两个实数根,点M在抛物线上,连接MQ、MH、PM,且.MP平分∠QMH,求出t值及点M的坐标. 【答案】(1) y=-x2+2x+3;(2);(3)t=1,(1+,2)和(1-,2). 【解析】 【分析】 (1)当x=0时代入抛物线y=ax2+bx+3(a≠0)就可以求出y=3而得出C的坐标,就可以得出直线的解析式,就可以求出B的坐标,在直角三角形AOC中,由三角形函数值就可以求出OA的值,得出A的坐标,再由待定系数法建立二元一次方程组求出其解就可以得出结论; (2)分两种情况讨论,当点P在线段CB上时,和如图3点P在射线BN上时,就有P点的坐标为(t,-t+3),Q点的坐标为(t,-t2+2t+3),就可以得出d与t之间的函数关系式而得出结论; (3)根据根的判别式就可以求出m的值,就可以求出方程的解而求得PQ和PH的值,延长MP至L,使LP=MP,连接LQ、LH,如图2,延长MP至L,使LP=MP,连接LQ、LH,就可以得出四边形LQMH是平行四边形,进而得出四边形LQMH是菱形,由菱形的性质就可以求出结论. 【详解】 (1)当x=0,则y=-x+n=0+n=n,y=ax2+bx+3=3, ∴OC=3=n. 当y=0, ∴-x+3=0,x=3=OB, ∴B(3,0). 在△AOC中,∠AOC=90°,tan∠CAO=, ∴OA=1, ∴A(-1,0). 将A(-1,0),B(3,0)代入y=ax2+bx+3, 得 , 解得: ∴抛物线的解析式:y=-x2+2x+3; (2) 如图1, ∵P点的横坐标为t 且PQ垂直于x轴 ∴P点的坐标为(t,-t+3), Q点的坐标为(t,-t2+2t+3). ∴PQ=|(-t+3)-(-t2+2t+3)|="|" t2-3t | ∴; ∵d,e是y2-(m+3)y+(5m2-2m+13)=0(m为常数)的两个实数根, ∴△≥0,即△=(m+3)2-4×(5m2-2m+13)≥0 整理得:△= -4(m-1)2≥0,∵-4(m-1)2≤0, ∴△=0,m=1, ∴ PQ与PH是y2-4y+4=0的两个实数根,解得y1=y2=2 ∴ PQ=PH=2,∴-t+3=2,∴t="1," ∴此时Q是抛物线的顶点, 延长MP至L,使LP=MP,连接LQ、LH,如图2, ∵LP=MP,PQ=PH,∴四边形LQMH是平行四边形, ∴LH∥QM,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3, ∴LH=MH,∴平行四边形LQMH是菱形, ∴PM⊥QH,∴点M的纵坐标与P点纵坐标相同,都是2, ∴在y=-x2+2x+3令y=2,得x2-2x-1=0,∴x1=1+,x2=1- 综上:t值为1,M点坐标为(1+,2)和(1-,2). 9.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x元.求: (1)房间每天的入住量y(间)关于x(元)的函数关系式; (2)该宾馆每天的房间收费p(元)关于x(元)的函数关系式; (3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少? 【答案】(1)y=60-;(2)z=-x2+40x+12000;(3)w=-x2+42x+10800,当每个房间的定价为每天410元时,w有最大值,且最大值是15210元. 【解析】 试题分析:(1)根据题意可得房间每天的入住量=60个房间﹣每个房间每天的定价增加的钱数÷10; (2)已知每天定价增加为x元,则每天要(200+x)元.则宾馆每天的房间收费=每天的实际定价×房间每天的入住量; (3)支出费用为20×(60﹣),则利润w=(200+x)(60﹣)﹣20×(60﹣),利用配方法化简可求最大值. 试题解析:解:(1)由题意得: y=60﹣ (2)p=(200+x)(60﹣)=﹣+40x+12000 (3)w=(200+x)(60﹣)﹣20×(60﹣) =﹣+42x+10800 =﹣(x﹣210)2+15210 当x=210时,w有最大值. 此时,x+200=410,就是说,当每个房间的定价为每天410元时,w有最大值,且最大值是15210元. 点睛:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题主要考查的是二次函数的应用,难度一般. 10.如图,二次函数图象的顶点为,对称轴是直线,一次函数的图象与轴交于点,且与直线关于的对称直线交于点. (1)点的坐标是 ______; (2)直线与直线交于点,是线段上一点(不与点、重合),点的纵坐标为.过点作直线与线段、分别交于点,,使得与相似. ①当时,求的长; ②若对于每一个确定的的值,有且只有一个与相似,请直接写出的取值范围 ______. 【答案】(1);(2)①;②. 【解析】 【分析】 (1)直接用顶点坐标公式求即可; (2)由对称轴可知点C(2,),A(-,0),点A关于对称轴对称的点(,0),借助AD的直线解析式求得B(5,3);①当n=时,N(2,),可求DA=,DN=,CD=,当PQ∥AB时,△DPQ∽△DAB,DP=9;当PQ与AB不平行时,DP=9;②当PQ∥AB,DB=DP时,DB=3,DN=,所以N(2,),则有且只有一个△DPQ与△DAB相似时,<n<. 【详解】 (1)顶点为; 故答案为; (2)对称轴, , 由已知可求, 点关于对称点为, 则关于对称的直线为, , ①当时,, ,, 当时,, , , ; 当与不平行时,, , , ; 综上所述; ②当,时, , , , , ∴有且只有一个与相似时,; 故答案为; 【点睛】 本题考查二次函数的图象及性质,三角形的相似;熟练掌握二次函数的性质,三角形相似的判定与性质是解题的关键. 11.在平面直角坐标系xOy中,顶点为A的抛物线与x轴交于B、C两点,与y轴交于点D,已知A(1,4),B(3,0). (1)求抛物线对应的二次函数表达式; (2)探究:如图1,连接OA,作DE∥OA交BA的延长线于点E,连接OE交AD于点F,M是BE的中点,则OM是否将四边形OBAD分成面积相等的两部分?请说明理由; (3)应用:如图2,P(m,n)是抛物线在第四象限的图象上的点,且m+n=﹣1,连接PA、PC,在线段PC上确定一点M,使AN平分四边形ADCP的面积,求点N的坐标.提示:若点A、B的坐标分别为(x1,y1)、(x2,y2),则线段AB的中点坐标为(,). 【答案】(1)y=﹣x2+2x﹣3;(2)OM将四边形OBAD分成面积相等的两部分,理由见解析;(3)点N(,﹣). 【解析】 【分析】 (1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式,即可求解; (2)利用同底等高的两个三角形的面积相等,即可求解; (3)由(2)知:点N是PQ的中点,根据C,P点的坐标求出直线PC的解析式,同理求出AC,DQ的解析式,并联立方程求出Q点的坐标,从而即可求N点的坐标. 【详解】 (1)函数表达式为:y=a(x﹣1)2+4, 将点B坐标的坐标代入上式得:0=a(3﹣1)2+4, 解得:a=﹣1, 故抛物线的表达式为:y=﹣x2+2x﹣3; (2)OM将四边形OBAD分成面积相等的两部分,理由: 如图1,∵DE∥AO,S△ODA=S△OEA, S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM, ∴S△OME=S△OBM, ∴S四边形OMAD=S△OBM; (3)设点P(m,n),n=﹣m2+2m+3,而m+n=﹣1, 解得:m=﹣1或4,故点P(4,﹣5); 如图2,故点D作QD∥AC交PC的延长线于点Q, 由(2)知:点N是PQ的中点, 设直线PC的解析式为y=kx+b, 将点C(﹣1,0)、P(4,﹣5)的坐标代入得:, 解得:, 所以直线PC的表达式为:y=﹣x﹣1…①, 同理可得直线AC的表达式为:y=2x+2, 直线DQ∥CA,且直线DQ经过点D(0,3), 同理可得直线DQ的表达式为:y=2x+3…②, 联立①②并解得:x=﹣,即点Q(﹣,), ∵点N是PQ的中点, 由中点公式得:点N(,﹣). 【点睛】 本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N是PQ的中点,是本题解题的突破点. 12.如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为. (1)求抛物线的解析式; (2)当何值时,的面积最大?并求最大值的立方根; (3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由. 【答案】(1)抛物线解析式为y=﹣x2+2x+3;(2)当t=时,△PEF的面积最大,其最大值为×, 最大值的立方根为=;(3)存在满足条件的点P,t的值为1或 【解析】 试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式; (2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可; (3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值. 试题解析: (1)由题意可得,解得, ∴抛物线解析式为y=﹣x2+2x+3; (2)∵A(0,3),D(2,3), ∴BC=AD=2, ∵B(﹣1,0), ∴C(1,0), ∴线段AC的中点为(,), ∵直线l将平行四边形ABCD分割为面积相等两部分, ∴直线l过平行四边形的对称中心, ∵A、D关于对称轴对称, ∴抛物线对称轴为x=1, ∴E(3,0), 设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得, ∴直线l的解析式为y=﹣x+, 联立直线l和抛物线解析式可得,解得或, ∴F(﹣,), 如图1,作PH⊥x轴,交l于点M,作FN⊥PH, ∵P点横坐标为t, ∴P(t,﹣t2+2t+3),M(t,﹣t+), ∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+, ∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×, ∴当t=时,△PEF的面积最大,其最大值为×, ∴最大值的立方根为=; (3)由图可知∠PEA≠90°, ∴只能有∠PAE=90°或∠APE=90°, ①当∠PAE=90°时,如图2,作PG⊥y轴, ∵OA=OE, ∴∠OAE=∠OEA=45°, ∴∠PAG=∠APG=45°, ∴PG=AG, ∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去), ②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK, 则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t, ∵∠APQ+∠KPE=∠APQ+∠PAQ=90°, ∴∠PAQ=∠KPE,且∠PKE=∠PQA, ∴△PKE∽△AQP, ∴,即,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去), 综上可知存在满足条件的点P,t的值为1或. 考点:二次函数综合题 13.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM. (1)求抛物线的函数关系式; (2)判断△ABM的形状,并说明理由; (3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点. 【答案】(1)抛物线解析式为y=x2﹣1;(2)△ABM为直角三角形.理由见解析;(3)当m≤时,平移后的抛物线总有不动点. 【解析】 试题分析:(1)分别写出A、B的坐标,利用待定系数法求出抛物线的解析式即可; 根据OA=OM=1,AC=BC=3,分别得到∠MAC=45°,∠BAC=45°- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 2021 中考 数学 压轴 专题 复习 二次 函数 综合 详细 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文